The selection of texts for second language learning purposes typically relies on teachers’ and test developers’ individual judgment of the observable qualitative properties of a text. Little or no consideration is generally given to the quantitative dimension within an evidence-based framework of reproducibility. This study aims to fill the gap by evaluating the effectiveness of an automatic tool trained to assess text complexity in the context of Italian as a second language learning. A dataset of texts labeled by expert test developers was used to evaluate the performance of three classifier models (decision tree, random forest, and support vector machine), which were trained using linguistic features measured quantitatively and extracted from the texts. The experimental analysis provided satisfactory results, also in relation to which kind of linguistic trait contributed the most to the final outcome.

Measuring Text Complexity for Italian as a Second Language Learning Purposes

Luciana Forti
;
Filippo Santarelli
;
Valentino Santucci
;
Stefania Spina
2019

Abstract

The selection of texts for second language learning purposes typically relies on teachers’ and test developers’ individual judgment of the observable qualitative properties of a text. Little or no consideration is generally given to the quantitative dimension within an evidence-based framework of reproducibility. This study aims to fill the gap by evaluating the effectiveness of an automatic tool trained to assess text complexity in the context of Italian as a second language learning. A dataset of texts labeled by expert test developers was used to evaluate the performance of three classifier models (decision tree, random forest, and support vector machine), which were trained using linguistic features measured quantitatively and extracted from the texts. The experimental analysis provided satisfactory results, also in relation to which kind of linguistic trait contributed the most to the final outcome.
978-1-950737-34-5
File in questo prodotto:
File Dimensione Formato  
W19-4438.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 494.29 kB
Formato Adobe PDF
494.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12071/15084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact