Recent research has been developed by different groups towards the development of sonic crystals as noise barriers. The present paper aims to contribute to this research, focusing on the possible application of this technology in practice, and exploring some aspects that may be useful for its further development. One of the objectives of this work is to explore the differences between experimental results obtained under laboratory conditions and numerical results computed with the finite element method (FEM), in 2D and 3D, understanding if different types of simplified models can be of use in the practical analysis of sonic crystals. Through this comparison, a validation of the prediction numerical models is performed, giving confidence for their use in the development and study of sonic crystal configurations. In this context, different geometric arrangements of the sonic crystals’ scatterers (the individual elements that make up the barriers) have been analyzed with the help of the numerical method, evaluating their behavior in different arrangements of numbers of elements, shape and size. A number of parametric studies are also performed introducing some randomness in the structure (in scatterer size and spacing), and analyzing its effect on the insertion loss provided by the sonic crystal. These contributions can be significantly useful for the development of new solutions, giving important hints about the sensitivity of these structures to possible defects or limitations in their production.
Experimental and Numerical Analysis of Wooden Sonic Crystals Applied as Noise Barriers
Asdrubali, Francesco;
2023-01-01
Abstract
Recent research has been developed by different groups towards the development of sonic crystals as noise barriers. The present paper aims to contribute to this research, focusing on the possible application of this technology in practice, and exploring some aspects that may be useful for its further development. One of the objectives of this work is to explore the differences between experimental results obtained under laboratory conditions and numerical results computed with the finite element method (FEM), in 2D and 3D, understanding if different types of simplified models can be of use in the practical analysis of sonic crystals. Through this comparison, a validation of the prediction numerical models is performed, giving confidence for their use in the development and study of sonic crystal configurations. In this context, different geometric arrangements of the sonic crystals’ scatterers (the individual elements that make up the barriers) have been analyzed with the help of the numerical method, evaluating their behavior in different arrangements of numbers of elements, shape and size. A number of parametric studies are also performed introducing some randomness in the structure (in scatterer size and spacing), and analyzing its effect on the insertion loss provided by the sonic crystal. These contributions can be significantly useful for the development of new solutions, giving important hints about the sensitivity of these structures to possible defects or limitations in their production.File | Dimensione | Formato | |
---|---|---|---|
environments-10-00116-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
9.86 MB
Formato
Adobe PDF
|
9.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.