Permutation problems have captured the attention of the combinatorial optimization community for decades due to the challenge they pose. Although their solutions are naturally encoded as permutations, in each problem, the information to be used to optimize them can vary substantially. In this article, we consider the Quadratic Assignment Problem (QAP) as a case study and propose using Doubly Stochastic Matrices (DSMs) under the framework of Estimation of Distribution Algorithms. To that end, we design efficient learning and sampling schemes that enable an effective iterative update of the probability model. Conducted experiments on commonly adopted benchmarks for the QAP prove doubly stochastic matrices to be preferred to four other models for permutations, both in terms of effectiveness and computational efficiency.

On the use of the Doubly Stochastic Matrix models for the Quadratic Assignment Problem (MAEB 2025)

Santucci Valentino;
2025-01-01

Abstract

Permutation problems have captured the attention of the combinatorial optimization community for decades due to the challenge they pose. Although their solutions are naturally encoded as permutations, in each problem, the information to be used to optimize them can vary substantially. In this article, we consider the Quadratic Assignment Problem (QAP) as a case study and propose using Doubly Stochastic Matrices (DSMs) under the framework of Estimation of Distribution Algorithms. To that end, we design efficient learning and sampling schemes that enable an effective iterative update of the probability model. Conducted experiments on commonly adopted benchmarks for the QAP prove doubly stochastic matrices to be preferred to four other models for permutations, both in terms of effectiveness and computational efficiency.
2025
978-84-1319-656-5
File in questo prodotto:
File Dimensione Formato  
maeb2025.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12071/48348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact