This paper gives an example of evolved features that improve image retrieval performance. A content-based image retrieval system for skin lesion images is presented. The aim is to support decision making by retrieving and displaying relevant past cases visually similar to the one under examination. Skin lesions of five common classes, including two non-melanoma cancer types, are used. Colour and texture features are extracted from lesions. Evolutionary algorithms are used to create composite features that optimise a similarity matching function. Experiments on our database of 533 images are performed and results are compared to those obtained using simple features. The use of the evolved composite features improves the precision by about 7%.
Content-Based Image Retrieval of Skin Lesions by Evolutionary Feature Synthesis
Ballerini, Lucia;
2010-01-01
Abstract
This paper gives an example of evolved features that improve image retrieval performance. A content-based image retrieval system for skin lesion images is presented. The aim is to support decision making by retrieving and displaying relevant past cases visually similar to the one under examination. Skin lesions of five common classes, including two non-melanoma cancer types, are used. Colour and texture features are extracted from lesions. Evolutionary algorithms are used to create composite features that optimise a similarity matching function. Experiments on our database of 533 images are performed and results are compared to those obtained using simple features. The use of the evolved composite features improves the precision by about 7%.File | Dimensione | Formato | |
---|---|---|---|
60240312.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
276.76 kB
Formato
Adobe PDF
|
276.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.