The evaluation of water evaporation from indoor swimming pools is a topic of considerable practical interest, since evaporation may cause the highest energy consumption of the pool plant. A purposely designed experimental apparatus was used to measure the water evaporation rate from a pool scale model inserted into a climatic chamber to control environmental conditions. The experimental data were obtained varying various parameters such as water temperature, air temperature, relative humidity and air velocity. The results were used to propose a prediction model for water evaporation which was compared to other methods found in the literature, showing a good agreement.

A scale model to evaluate water evaporation from indoor swimming pools

Asdrubali, Francesco
2009-01-01

Abstract

The evaluation of water evaporation from indoor swimming pools is a topic of considerable practical interest, since evaporation may cause the highest energy consumption of the pool plant. A purposely designed experimental apparatus was used to measure the water evaporation rate from a pool scale model inserted into a climatic chamber to control environmental conditions. The experimental data were obtained varying various parameters such as water temperature, air temperature, relative humidity and air velocity. The results were used to propose a prediction model for water evaporation which was compared to other methods found in the literature, showing a good agreement.
2009
Evaporation, Heat loads, Swimming pools, Scale model
File in questo prodotto:
File Dimensione Formato  
Asdrubali Energy and Buildings 2009.pdf

non disponibili

Licenza: NON PUBBLICO - Accesso chiuso
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12071/39794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact