Fluid flow through porous media is of great importance for many natural systems, such as transport of groundwater flow, pollution transport and mineral processing. In this paper, we propose and validate a novel finite volume formulation of the lattice Boltzmann method for porous flows, based on the Brinkman-Forchheimer equation. The porous media effect is incorporated as a force term in the lattice Boltzmann equation, which is numerically solved through a cell-centered finite volume scheme. Correction factors are introduced to improve the numerical stability. The method is tested against fully porous Poiseuille, Couette and lid-driven cavity flows. Upon comparing the results with well-documented data available in literature, a satisfactory agreement is observed. The method is then applied to simulate the flow in partially porous channels, in order to verify its potential application to fractured porous conduits, and assess the influence of the main porous media parameters, such as Darcy number, porosity and porous media thickness.

### Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study

#### Abstract

Fluid flow through porous media is of great importance for many natural systems, such as transport of groundwater flow, pollution transport and mineral processing. In this paper, we propose and validate a novel finite volume formulation of the lattice Boltzmann method for porous flows, based on the Brinkman-Forchheimer equation. The porous media effect is incorporated as a force term in the lattice Boltzmann equation, which is numerically solved through a cell-centered finite volume scheme. Correction factors are introduced to improve the numerical stability. The method is tested against fully porous Poiseuille, Couette and lid-driven cavity flows. Upon comparing the results with well-documented data available in literature, a satisfactory agreement is observed. The method is then applied to simulate the flow in partially porous channels, in order to verify its potential application to fractured porous conduits, and assess the influence of the main porous media parameters, such as Darcy number, porosity and porous media thickness.
##### Scheda breve Scheda completa Scheda completa (DC)
LBM; Porous media; Brinkmann–Forchheimer equation
File in questo prodotto:
File
J_SCI_COMP.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.77 MB
Utilizza questo identificativo per citare o creare un link a questo documento: `http://hdl.handle.net/20.500.12071/394`