Perivascular spaces include a variety of passageways around arterioles, capillaries and venules in the brain, along which a range of substances can move. Although perivascular spaces were first identified over 150 years ago, they have come to prominence recently owing to advances in knowledge of their roles in clearance of interstitial fluid and waste from the brain, particularly during sleep, and in the pathogenesis of small vessel disease, Alzheimer disease and other neurodegenerative and inflammatory disorders. Experimental advances have facilitated in vivo studies of perivascular space function in intact rodent models during wakefulness and sleep, and MRI in humans has enabled perivascular space morphology to be related to cognitive function, vascular risk factors, vascular and neurodegenerative brain lesions, sleep patterns and cerebral haemodynamics. Many questions about perivascular spaces remain, but what is now clear is that normal perivascular space function is important for maintaining brain health. Here, we review perivascular space anatomy, physiology and pathology, particularly as seen with MRI in humans, and consider translation from models to humans to highlight knowns, unknowns, controversies and clinical relevance.

Perivascular spaces in the brain: anatomy, physiology and pathology

Ballerini, Lucia;
2020-01-01

Abstract

Perivascular spaces include a variety of passageways around arterioles, capillaries and venules in the brain, along which a range of substances can move. Although perivascular spaces were first identified over 150 years ago, they have come to prominence recently owing to advances in knowledge of their roles in clearance of interstitial fluid and waste from the brain, particularly during sleep, and in the pathogenesis of small vessel disease, Alzheimer disease and other neurodegenerative and inflammatory disorders. Experimental advances have facilitated in vivo studies of perivascular space function in intact rodent models during wakefulness and sleep, and MRI in humans has enabled perivascular space morphology to be related to cognitive function, vascular risk factors, vascular and neurodegenerative brain lesions, sleep patterns and cerebral haemodynamics. Many questions about perivascular spaces remain, but what is now clear is that normal perivascular space function is important for maintaining brain health. Here, we review perivascular space anatomy, physiology and pathology, particularly as seen with MRI in humans, and consider translation from models to humans to highlight knowns, unknowns, controversies and clinical relevance.
Animals, Glymphatic System, Humans, Brain Diseases
File in questo prodotto:
File Dimensione Formato  
WardlawReview2020.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12071/32516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact