This article describes the bot.zen system that participated in the Language Learning Development (LangLearn) shared task of the EVALITA 2023 campaign. We developed a simple machine learning system with good interpretability for later use, and used the shared task as an opportunity to provide Master’s students with hands-on training and practical experience in NLP

bot.zen at LangLearn: regressing towards interpretability

Olga Lopopolo;Stefania Spina
2023-01-01

Abstract

This article describes the bot.zen system that participated in the Language Learning Development (LangLearn) shared task of the EVALITA 2023 campaign. We developed a simple machine learning system with good interpretability for later use, and used the shared task as an opportunity to provide Master’s students with hands-on training and practical experience in NLP
2023
evalita, shared task, regression, MALT-IT2, L2
File in questo prodotto:
File Dimensione Formato  
EVALITA2023_paper21.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 240.91 kB
Formato Adobe PDF
240.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12071/37208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact