
An improved Memetic Algebraic Differential Evolution

for solving the Multidimensional Two-Way Number

Partitioning Problem

Valentino Santuccia, Marco Baiolettib, Gabriele Di Barib

a Department of Humanities and Social Sciences
University for Foreigners of Perugia

Piazza G. Spitella, 3 - Perugia (Italy)
valentino.santucci@unistrapg.it

b Department of Mathematics and Computer Science
University of Perugia

Via Vanvitelli, 1 - Perugia (Italy)
marco.baioletti@unipg.it, gabriele.dibari@unifi.it

Preprint submitted to Expert Systems with Applications November 23, 2021

Abstract

In this article, we propose a novel and effective evolutionary algorithm for
the challenging combinatorial optimization problem known as Multidimen-
sional Two-Way Number Partitioning Problem (MDTWNPP). Since the
MDTWNPP has been proven to be NP-hard, in the recent years, it has
been been increasingly addressed by means of meta-heuristic approaches.
Nevertheless, previous proposals in literature do not make full use of crit-
ical problem information that may improve the effectiveness of the search.
Here, we bridge this gap by designing an improved Memetic Algebraic Dif-
ferential Evolution (iMADEB) algorithm that incorporates critical informa-
tion about the problem. In particular, iMADEB evolves a population of
candidate local optimal solutions by adopting three key design concepts: a
novel non-redundant bit-string representation which maps population indi-
viduals one-to-one to MDTWNPP solutions, a smoother local search opera-
tor purposely designed for the MDTWNPP landscapes, and a self-adaptive
algebraic differential mutation scheme built on the basis of the Lévy flight
concept which automatically regulates the exploration-exploitation trade-off
of the search. Computational experiments have been conducted on a widely
accepted benchmark suite for the MDTWNPP with a twofold purpose: ana-
lyzing the robustness of iMADEB and compare its effectiveness with respect
to the state-of-the-art approaches to date for the MDTWNPP. The experi-
mental results provide important indications about iMADEB robustness and,
most importantly, clearly show that iMADEB is the new state-of-the-art al-
gorithm for the MDTWNPP.

Keywords: Multidimensional Two-Way Number Partitioning, Algebraic
Differential Evolution, Memetic Algorithm, Combinatorial optimization

1. Introduction1

The MultiDimensional Two-Way Number Partitioning Problem (from2

now on abbreviated as MDTWNPP) has been introduced in (Kojić, 2010)3

as a direct generalization of the classic Number Partitioning Problem (NPP)4

which has been dubbed “the easiest hard problem” in (Mertens, 2006). In5

fact, despite the NPP can be stated in very simple terms – given a multiset of6

positive integers, find a binary partition such that the absolute difference of7

2

the within-set sums is as small as possible (possibly 0) –, it has been proven to8

be NP-hard in the seminal work of Karp on NP-completeness (Karp, 1972).9

The MDTWNPP extends the NPP by considering multidimensional vectors10

of real numbers and the distance induced by the infinity norm rather than,11

respectively, positive integers and the absolute difference distance.12

Formally, an instance of the MDTWNPP is a multiset S of n real-valued
vectors of dimension d, i.e., S = {vi ∈ Rd : 1 ≤ i ≤ n}, and the goal is to
partition S into two subsets S0 and S1 such that: S0 ∪ S1 = S, S0 ∩ S1 = ∅,
and the within-set sums of the vectors in S0 and S1 are as close as possible
in terms of the L∞ vector distance that, for two generic vectors v, w ∈ Rd, is
defined as

L∞(v, w) = max
1≤j≤d

|v(j)− w(j)|. (1)

Hence, the MDTWNPP objective function to be minimized is

f(S0, S1) = L∞

(∑
v∈S0

v,
∑
w∈S1

w

)
. (2)

Clearly, the MDTWNPP reduces to the NPP when d = 1 and this proves13

that MDTWNPP is NP-hard as well. Moreover, as noted in (Kojić, 2010), the14

MDTWNPP misses an important characteristic of the NPP, i.e., the compu-15

tational complexity of an instance does not decrease together with the ratio16

between the number of bits required to represent a solution and n – as it has17

been observed to happen for NPP instances in (Mertens, 2006) and (Corus18

et al., 2018). Therefore, the MDTWNPP can be considered computationally19

more difficult than the NPP. This is further confirmed by the experimental20

analysis conducted in (Rodriguez et al., 2017), where the CPLEX solver,21

applied to an integer linear programming model for the MDTWNPP, has22

never been able to improve the trivial lower bound of zero on a set of bench-23

mark instances. Recently, a novel mixed integer linear programming model24

for the multiway generalization of the MDTWNPP has been proposed and25

experimented in (Faria et al., 2021). However, its results do not look to be26

competitive with state-of-the-art results.27

For all these reasons, meta-heuristic algorithms have started to be de-28

signed for and applied to the MDTWNPP. Notable examples are: (Pop and29

Matei, 2013b), (Kratica et al., 2014), (Rodriguez et al., 2017), and (Santucci30

et al., 2019).31

Since a MDTWNPP partition {S0, S1} can be simply represented by an32

n-length bit-string x ∈ Bn in such way that vi ∈ Sx(i), for i ∈ {1, . . . , n},33

3

the meta-heuristic approaches adopt this simple binary representation for34

the evolved solutions. However, it is easy to see that such encoding is redun-35

dant because, though {S0, S1} and {S1, S0} clearly are the same MDTWNPP36

partition, they are represented by two different bit-strings, one the bitwise37

negation of the other. Hence, an issue common to all the previously proposed38

meta-heuristics is that they navigate a search space whose size is double with39

respect to the number of MDTWNPP solutions.40

Furthermore, the most effective MDTWNPP algorithms to date adopt41

one or more local search operators as part of their main search scheme.42

Though some of these operators rely on solution neighborhoods purposely43

designed for the problem at hand – like, for instance, the local search scheme44

proposed in (Rodriguez et al., 2017) –, none of them fully consider the in-45

trinsic characteristics of the MDTWNPP objective function.46

Both these issues – the redundant representation and local search neigh-47

borhood design –, if suitably addressed, could allow further advancements in48

the MDTWNPP literature. In this work, we address these two aspects by49

introducing: a novel non-redundant bit-string representation which halves50

the size of the search space navigated by the algorithm, and an efficient local51

search scheme which allows a smoother local exploration by means of a novel52

restricted neighborhood built on the basis of the L∞ distance considered in53

the MDTWNPP objective function formulation.54

These two key ingredients are incorporated in iMADEB: an improved55

variant of our previously proposed Memetic Algebraic Differential Evolution56

for the Binary space (Santucci et al., 2019). Like its predecessor, iMADEB57

adopts a memetic approach which combines a discrete Differential Evolution58

(DE) global search scheme with a variable neighborhood descent as local59

search operator. The discrete DE part is built on the basis of a solid alge-60

braic framework for combinatorial optimization (Santucci et al., 2020) which61

is extended in this work in order to handle the novel reduced bit-string rep-62

resentation. Moreover, we also introduce a Lévy flight-based self-adaptation63

scheme in order to better regulate the exploration-exploitation trade-off of64

the search and to improve the ability of the algorithm in escaping stagnation65

states. Finally, the variable neighborhood descent adopts the newly designed66

restricted neighborhood and also introduces, with respect to (Santucci et al.,67

2019), a probabilistic application strategy and a different neighborhood ex-68

ploration scheme.69

A thorough experimental analysis is performed using a widely adopted70

benchmark suite for the MDTWNPP with a twofold purpose. First, we71

4

analyze the robustness of iMADEB and the impact of its different algorith-72

mic components and, second, we compare iMADEB with the state-of-the-art73

MDTWNPP meta-heuristics to date.74

The rest of the article is organized as follows. Section 2 provides a thor-75

ough review of the previous meta-heuristic proposals for the MDTWNPP to-76

gether with a short description of the original Differential Evolution scheme.77

Section 3 introduces the novel non-redundant representation and the main78

scheme of iMADEB. The algebraic differential mutation operator, purposely79

redesigned for the new bit-string representation, is described in Section 4,80

the Lévy flight step-size adaptation is depicted in Section 5, while Section 681

describes the variable neighborhood descent procedure. Experimental re-82

sults are provided and discussed in Section 7, while conclusions are drawn in83

Section 8 where future lines of research are also depicted.84

2. Related work85

In Section 2.1 we provide a detailed review of all (to the best of our86

knowledge) the meta-heuristic proposals for the MDTWNPP to date, while87

in Scleanection 2.2 we briefly recall the original Differential Evolution scheme88

together with its main applications.89

2.1. Meta-heuristic proposals for the MDTWNPP90

An integer linear programming formulation of the MDTWNPP has been91

originally proposed in (Kojić, 2010), where a set of 210 benchmark instances92

have been randomly generated and solved by using the linear programming93

solver CPLEX.94

Although the MDTWNPP is a generalization of the NPP, many tech-95

niques used to solve the latter cannot be extended to the multidimensional96

case. For instance, both the NPP greedy algorithm (Mertens, 2006) and97

the Karmarkar-Karp heuristic (Karmarker and Karp, 1983) require to sort98

the set of numbers in input but, in the MDTWNPP, the set of vectors does99

not admit, in general, a well defined total order. Therefore, meta-heuristic100

approaches purposely designed for the MDTWNPP have been proposed.101

The first of such proposals has been the genetic algorithm (GA) intro-102

duced in (Pop and Matei, 2013a) and designed as follows: candidate solu-103

tions are represented using the simple redundant bit-string representation104

described in Section 1; parent individuals for the one-point crossover are se-105

lected by means of a binary tournament; mutation works by flipping, with106

5

probability 0.1, every bit of an offspring, which is further improved by a107

purposely defined heuristic operator; finally, the (µ, λ) replacement strategy108

is adopted. The GA outperformed CPLEX in the largest instances with109

n ≥ 400.110

This GA has been further improved by the same authors in (Pop and111

Matei, 2013b), where a memetic algorithm (MA) is proposed for solving a112

“multiway” generalization of the MDTWNPP in which the vectors can be113

partitioned in p ≥ 2 subsets. The MA extends the genetic algorithm by114

introducing a local search improvement step in such a way that the evolved115

population is constantly formed by local optima individuals. The local search116

method explores, in succession, three different k-change neighborhoods, for117

k = 1, 2, 3, where k denotes the number of bits changed by any single move.118

However, all the neighborhoods are syntactically defined on the redundant119

bit-string representation and, furthermore, they are merely syntactic and do120

not consider any intrinsic characteristics of the MDTWNPP. Computational121

experiments performed for the case p = 2, i.e., in the MDTWNPP prob-122

lem, show that MA outperforms both the GA and CPLEX in almost all the123

benchmark instances.124

Two other meta-heuristics have been introduced in (Kratica et al., 2014).125

The first one is a VNS-like procedure (Mladenović and Hansen, 1997)126

which operates on an incumbent solution x, represented as a bit-string (again,127

using the redundant encoding). A series of increasing neighborhoods Nk(x)128

are employed in the shaking phase, along with a local search whose ele-129

mentary step is to flip both a 0-bit and a 1-bit of x. This corresponds to130

simultaneously swap two vectors: one vector moves from the set S0 to the set131

S1, while the other one moves in the opposite direction. The generic neigh-132

borhood Nk(x) is defined as the set of all the bit-strings having Hamming133

distance k from x thus, as before, the neighborhoods are merely syntactic.134

The parameter k is increased, from 2 to min{30, bn/4c}, circularly at every135

iteration where the produced local optimum does not improve the incumbent136

solution.137

The second meta-heuristic uses an Electromagnetism-like (EM) approach.138

A solution is represented as a real vector in [0, 1]n, which is decoded to a bi-139

nary partition by means of a simple thresholding procedure: the vector vi140

of the MDTWNPP instance is assigned to the set S0 when the i-th solution141

component is smaller than 0.5, otherwise it is assigned to S1. At each gener-142

ation, every individual undergoes to local search and scaling operators, then143

all the solutions are moved according to “electromagnetic forces” that can144

6

be attractive or repulsive depending on the objective values in the current145

population. It is worthwhile to note that the real vector encoding of EM is146

highly redundant because any MDTWNPP solution may be represented by147

an infinite number of real vectors.148

The experiments conducted in (Kratica et al., 2014) show that VNS149

and EM obtained comparable performances and both outperform MA and150

CPLEX.151

A GRASP procedure for the MDTWNPP, equipped with an Exterior152

Path Relinking method, is described in (Rodriguez et al., 2017). The algo-153

rithm evolves a set of solutions, called “elite set”. At each step, the GRASP154

procedure produces a new solution by means of two operations: construction155

and local improvement. The former operation builds-up a solution by means156

of a greedy method, while the latter iteratively improves the incumbent solu-157

tion by using a (possibly restricted) local search in the space of the 2-change158

neighborhood. Then, the Path Relinking phase explores a path from the new159

solution si to a randomly selected solution sG in the elite set (Interior PR) or160

beyond sG (Exterior PR), returning the best solution found in the path. The161

configuration with the Exterior Path Relinking, i.e., GRASP+ePR, reached162

better performances and outperformed both VNS and CPLEX. Importantly,163

the restricted neighborhood of GRASP+ePR is the first proposal which tries164

to consider the intrinsic characteristics of the MDTWNPP. In fact, the neigh-165

borhood is restricted by considering the closer pairs of vectors from different166

subsets but, unfortunately, the authors used the Euclidean distance and not167

the L∞ distance considered in the definition of the MDTWNPP objective168

function.169

Other two works related to the MDTWNPP have been proposed in (Hacibe-170

yoglu et al., 2014) and (Hacibeyoglu et al., 2018). The former proposes a171

greedy heuristic and a genetic algorithm, but only for the special case of bi-172

dimensional vectors (i.e., d = 2), while the latter describes an experimental173

comparison of four meta-heuristic methods: another genetic algorithm, sim-174

ulated annealing, migrating bird optimization algorithm and clonal selection175

algorithm. However, neither (Hacibeyoglu et al., 2014) nor (Hacibeyoglu176

et al., 2018) present experimental results which are competitive with the177

previously described proposals.178

To the best of our knowledge, the state-of-the-art MDTWNPP algorithm179

to date is MADEB, i.e., the memetic algebraic differential evolution proposed180

in our preliminary work (Santucci et al., 2019) of which this article is an181

extension. In fact, MADEB significantly outperformed GRASP+ePR, VNS182

7

and CPLEX on a set of 126 benchmark instances by obtaining the best183

average results on 106 instances (about 84% of the benchmark suite) and184

76 new best known solutions. However, also MADEB adopts the simlpe185

redundant bit-string representation and the merely syntactic neighborhood186

definitions for its local search part.187

Summarizing, all the meta-heuristics proposed in the MDTWNPP liter-188

ature adopt a redundant solution representation and the most effective ones189

use local search operators that, however, do not take into account the intrin-190

sic characteristics of the MDTWNPP objective function. We believe that191

addressing these two aspects may bring to more effective methods. Hence, in192

this work, we extend MADEB by incorporating a novel non-redundant repre-193

sentation, a smoother local search procedure, and a self-adaptive mechanism194

to control the exploration-exploitation balance of the search. Moreover, we195

provide a more thorough experimental analysis on all the 210 benchmark196

instances originally proposed in (Kojić, 2010).197

2.2. Differential Evolution198

Differential Evolution (DE) is a population based evolutionary meta-199

heuristic, originally proposed in (Storn and Price, 1997), for continuous op-200

timization problems.201

DE evolves a population of N real vectors {x1, . . . , xN} by iteratively ap-202

plying three genetic operators: differential mutation, crossover and selection.203

The key operator of DE is the differential mutation which, for every
population individual xi, produces a mutant vector yi as a linear combination
of few other population individuals. Formally,

yi ← xbase + F · (xr1 − xr2), (3)

where: xr1 and xr2 are two randomly selected population individuals different204

between them and with respect to xbase which, depending on the chosen205

mutation strategy, may be set to: the current individual xi, another random206

population individual, or the best solution so far. Moreover, F > 0 is the DE207

scale factor parameter which is usually tuned offline or online by means of self-208

adaptive mechanisms such as (Brest et al., 2006) or (Tanabe and Fukunaga,209

2013).210

Notably, equation (3) perturbs xbase by an amount that is obtained from211

the differences’ distribution of the DE population which is, itself, constantly212

evolved during the search. This mechanism allows DE to continuously adapt213

8

its mutation strength and it is the reason of why the differential mutation is214

usually considered the core operator of DE (Price et al., 2006).215

After the differential mutation, any population individual xi undergoes
a crossover phase with its corresponding mutant yi. Though many different
crossover strategies have been proposed (Storn and Price, 1997; Price et al.,
2006), the most used one is the binomial crossover scheme which, for every
dimension j, produces an offspring zi according to

zi(j)←
{
yi(j) if rj < CR or j = t,
xi(j) otherwise,

(4)

where: rj is a randomly generated number in [0, 1), t is a dimension randomly216

selected for each individual and ensuring that at least one component of the217

mutant is inherited by zi, while CR ∈ [0, 1] is the DE crossover probability218

which is often self-adapted as, for instance, in (Brest et al., 2006) or (Tanabe219

and Fukunaga, 2013).220

Once zi is generated, it competes with xi in order to enter the next221

generation population. In the most used selection scheme, the fitter between222

zi and xi is selected.223

During the years, DE has been applied to a variety of problems and fields224

such as, among the others, product line design (Tsafarakis et al., 2020), com-225

putational systems biology (Penas et al., 2015), time series forecasting (Wang226

et al., 2015), image segmentation (Cuevas et al., 2010), underwater glider227

path planning (Zamuda and Sosa, 2019), traffic signal control (Bi et al.,228

2014), and memetic computing (Piotrowski, 2013). Moreover, interesting229

variants of DE for combinatorial optimization problems have been proposed230

in (Santucci et al., 2016; Baioletti et al., 2020, 2018).231

3. Main scheme of iMADEB232

iMADEB is a memetic algebraic differential evolution which improves our233

previous proposal (Santucci et al., 2019) by extending it along three different234

lines: non-redundant bit-string representation, Lévy flight mutation, and235

redesigned local search procedure.236

The focal point for the non-redundant representation is that a generic237

partition {S0, S1} is equivalent to {S1, S0}. In fact, under the objective238

function definition provided in equation (2), f(S0, S1) = f(S1, S0). Though239

this aspect is easy to read, all the previous population-based meta-heuristics240

for the MDTWNPP (described in Section 2) do not seem to address this241

9

point. In iMADEB we force the genotypic representation to be in one-to-242

one relationship with the problem phenotype – binary partitions without an243

ordering of the subsets – by encoding any solution with a string of n − 1244

bits and adopting the convention that the n-th vector of the MDTWNPP245

instance resides in the first lexicographic subset of the partition.246

Formally, given the set S = {v1, v2, . . . , vn} of the n instance vectors,
the “shortened” bit-string x ∈ Bn−1 uniquely represents the binary partition
(S0, S1) of S where

S0 = {vi ∈ S : x(i) = 0} ∪ {vn},
S1 = {vi ∈ S : x(i) = 1}. (5)

Hence, the (n − 1)-length bit-string does not act on vn which is used as247

reference vector, while the i-th bit of x decides if vi belongs to the same set248

of vn (when x(i) = 0) or not (when x(i) = 1). Clearly, any other choice for249

the reference vector is equivalent.250

It is also easy to note that: (i) every bit-string represents now a different251

partition, and (ii) the size of the genotypic search space is reduced from 2n252

to 2n−1 solutions.253

By using this representation, iMADEB evolves a population of N bit-254

strings by iterative applications of the following search operators: binary255

algebraic differential mutation, variable neighborhood descent, and selection.256

Its main scheme is depicted in Algorithm 1.257

The population is initialized following the sparse bit-string initialization258

proposed in (Santucci et al., 2019), i.e., for every population individual xi: a259

random value pi ∈ [0, 1] is generated and, for 1 ≤ j < n, xi(j) is set to 1 with260

probability pi, or 0 otherwise. The rationale of this initialization scheme is261

to generate a more sparse population. In fact, the expected number of 1-bits262

throughout the population individuals is uniformly distributed in [0, n − 1]263

(and not fixed to (n− 1)/2 as in the classic random initialization).264

For every population individual xi, AlgebraicDifferentialMutation

generates a mutant yi as follows:

yi ← xi ⊕ F � (xr1 	 xr2), (6)

where: F > 0 is a scale factor parameter, xr1 and xr2 are two randomly265

chosen population individuals different between them and with respect to266

xi, and the ⊕,	,� are the binary algebraic operators defined and discussed267

10

Algorithm 1 Main scheme of iMADEB

1: Initialize N bit-strings x1, . . . , xN ∈ Bn−1

2: while termination condition is not satisfied do
3: for i = 1 to N do
4: yi ← AlgebraicDifferentialMutation(xi)
5: zi ← VariableNeighborhoodDescent(yi)
6: end for
7: for i← 1 to N do
8: xi ← Selection(xi, zi)
9: end for

10: if xbest was not updated in the last 1000 generations then
11: Reinitialize the bit-strings in {x1, . . . , xN} \ {xbest}
12: end if
13: end while
14: return xbest

in Section 4 by taking into account the newly introduced non-redundant268

representation.269

It is worthwhile to note that the scale factor F regulates the magnitude of270

the mutation and it is self-adapted during the evolution by means of a newly271

designed adaptation scheme based on the Lévy flight concept (Viswanathan272

et al., 1999). The aim is to allow the search to occasionally perform large273

“jumps” in order to escape from stagnation states. The Lévy flight adapta-274

tion is described in Section 5.275

After the differential mutation, the mutant yi undergoes a local search276

phase as in other memetic approaches (Moscato et al., 2004; Moscato and277

Cotta, 2003, 2019). The local search procedure VariableNeighborhoodDescent278

adopts two different neighborhood and generates the trial individual zi in279

such a way that zi is a local optimum of both neighborhoods. With respect to280

the previous proposal (Santucci et al., 2019), VariableNeighborhoodDescent281

is modified by considering: a new and smoother neighborhood definition, the282

best-improvement exploration scheme, and a probabilistic application strat-283

egy. All these aspects are described in Section 6.284

The Selection procedure replaces the population individual xi with the285

trial bit-string zi if and only if f(zi) < f(xi), where f is the objective function286

defined in equation (2). Moreover, in order to escape persistent stagnation287

states, if the best population individual xbest was not updated during the last288

11

1000 generations, then all the population, except xbest , is reinitialized.289

4. Binary Algebraic Differential Mutation290

In iMADEB, the binary algebraic differential mutation is in charge of291

exploring the search space by providing new seed solutions to the following292

local search phase. As depicted in equation (6), every individual xi is mutated293

by exploiting the discrete difference between other two randomly selected294

population individuals (xr1 and xr2). As in the classic Differential Evolution295

(DE) (Storn and Price, 1997), the differences’ distribution evolves together296

with the population, thus constantly adapting the exploration strength of297

the algorithm during the search.298

However, classic DE addresses numerical optimization problems and re-299

quires a careful redefinition in order to be applied to the binary space.300

In (Santucci et al., 2016, 2020), an original algebraic framework has been301

introduced in order to design a differential mutation for combinatorial search302

spaces in such a way that it consistently simulates the behavior of its nu-303

merical counterpart. The framework abstractly defines the design of the304

combinatorial differential mutation for any discrete space representable by a305

finitely generated group (Santucci et al., 2016, 2020; Baioletti et al., 2020).306

In the following, after briefly recalling the algebraic framework for the307

binary space as used in the previous MADEB proposal (Section 4.1), we in-308

troduce its revisited implementation for the newly introduced non-redundant309

binary representation (Section 4.2) and we analyze the search behavior of the310

binary differential mutation used in iMADEB (Section 4.3).311

4.1. Previous algebraic operators for the binary space312

In order to define the operators ⊕,	,� for the bit-strings, the abstract313

algebraic framework described in (Santucci et al., 2020) requires: (i) a binary314

operation in Bn which satisfies the group properties, (ii) a subset of generator315

bit-strings which generates all the other bit-strings, and (iii) a fast factoriza-316

tion algorithm which decomposes any bit-string in terms of generators.317

By denoting the bitwise XOR operation with Y, it is easy to see that Bn318

forms a group under Y. In fact, Y is commutative and associative, the “all319

zeros” bit-string 0 is the neutral element, and the inverse of any x ∈ Bn is320

itself, i.e., x−1 = x.321

12

Given x, y ∈ Bn, we recall that: the Hamming weight |x| is the number322

of 1-bits in x, and the Hamming distance between x and y is |xY y|, i.e., the323

number of positions i such that x(i) 6= y(i).324

Bn is finitely generated by the generating set U ⊂ Bn composed by the n325

bit-strings with Hamming weight equal to 1, i.e., any generator ui ∈ U , for326

1 ≤ i ≤ n, is such that ui(i) = 1, while the rest of its bits are 0. Therefore,327

any x ∈ Bn can be written as x = ui1 Y ui2 Y . . . Y uil , where i1, i2, . . . , il328

are the indexes of the 1-bits of x. Clearly, l = |x|. The decomposition is329

minimal and unique, up to reordering the indexes i1, i2, . . . , il. We exploit this330

property and we represent the minimal decomposition of x ∈ Bn as the set331

Ux = {ui ∈ U : x(i) = 1}. Note anyway that any ordering of the generators332

in Ux is a sequence that fulfills the abstract framework definitions (Santucci333

et al., 2020). Importantly, for each x ∈ Bn, the application of the generator334

ui to x, i.e., x Y ui, corresponds to flipping the i-th bit of x.335

Therefore, by following the abstract definitions given in (Santucci et al.,336

2020) and (Santucci et al., 2016), it is now possible to concretely derive the337

operations ⊕,	,� for the binary space.338

Given x, y ∈ Bn, the addition ⊕ is defined as x ⊕ y := x Y y, while the339

subtraction uses the property that x−1 = x and, therefore, it coincides with340

the addition, i.e., y 	 x := x Y y.341

Given a scalar F ≥ 0 and a bit-string x ∈ Bn, the stochastic scalar342

multiplication z = F � x is defined as randomly selecting a z ∈ Bn such343

that its decomposition Uz: (i) has size k = dF · |x|e, and (ii) when F ≤ 1,344

Uz ⊆ Ux, while (iii) if F > 1, Uz ⊇ Ux. It is easy to see that any ordering345

of the generators in Uz satisfies the abstract scalar multiplication properties346

depicted in (Santucci et al., 2020). Operatively, when F ≤ 1, Uz is randomly347

selected among the
(|x|
k

)
subsets of size k of Ux while, when F > 1, Uz is348

computed as Ux∪A, where A is randomly selected among the
(
n−|x|
k−|x|

)
subsets349

of size k−|x| of U \Ux. Note also that |F �x| cannot be larger than n, thus350

we limit F to n
|x| when larger.351

As any other finitely generated group, (Bn,Y, U) has an associated Cayley352

graph that, in our case, is the binary hypercube with n vertices, where all353

the pairs of bit-strings, differing in a single bit i, are connected by an edge354

labelled with ui ∈ U . Hence, it is easy to see that the Cayley graph is the355

usual binary search space whose neighborhood is induced by bit-flip moves.356

Moreover, it is also possible to show that the operations ⊕,	,� simulate – in357

the binary space – the behavior of their numerical counterparts on the classic358

13

Euclidean space. The main idea is that the dichotomic interpretation of a359

Euclidean vector, both as point and as displacement (between two points),360

is brought to the binary Cayley graph by considering a bit-string both as361

a vertex and as a shortest path (between two vertices). For further details362

about the algebraic framework we refer the interested reader to (Santucci363

et al., 2020).364

4.2. Algebraic operators for the non-redundant binary space365

Given x ∈ Bn, we denote by x′ its bitwise negation. For example, let366

x = (1001), then x′ = (0110). As discussed in Section 3, using the trivial367

bit-string representation for the MDTWNPP, we have that both x and x′368

correspond to exactly the same binary partition, thus they represent the same369

phenotypic solution. For this reason, the new non-redundant representation370

which fixes a reference vector and works with m = n− 1 bits is introduced.371

In this way, x and x′ represent two different MDTWNPP partitions and the372

mapping between genotype and phenotype is now one-to-one.373

However, directly applying the previous algebraic operators to the re-
duced representation results in a subtle issue. Let see it with a small example:
consider n = 4 (thus m = 3 and the reference vector is v4) and the m-length
bit-string x = (000) together with its negation x′ = (111). Under the non-
redundant representation, x and x′ respectively represent the following two
partitions:

(Sx0 = {v1, v2, v3, v4}, Sx1 = ∅),
(Sx

′
0 = {v4}, Sx

′
1 = {v1, v2, v3}).

Clearly, x and x′ are distant three bit-flips, but (Sx0 , S
x
1) can be transformed374

to (Sx
′

0 , S
x′
1) by simply changing the subset of the reference vector v4 and375

remembering the naming convention that the first lexicographic subset of a376

partition is the one which includes the reference vector. More in general,377

we have that the phenotypic distance between two solutions can be much378

smaller than the Hamming distance between the corresponding bit-strings.379

Fortunately, our algebraic framework allows to address this issue in an380

elegant way. The only modification is to add the “all ones” bit-string 1 to381

the generating set. Formally, we consider the generating set Û ⊂ Bm which382

is defined as Û = U ∪{1}. Therefore, the generators in Û are: the “all ones”383

bit-string 1 and the m bit-strings with a single 1-bit (i.e., those in U).384

This simple modification introduces shortcuts in the Cayley graph in such385

a way that the genotypic distance between two solutions exactly corresponds386

14

to their phenotypic distance. By considering the previous example, we have387

that x′ = x ⊕ 1 = x Y 1, i.e., x′ can be obtained from x by a single geno-388

typic move, exactly as it happens between their corresponding partitions.389

Summarizing, the 1 generator semantically means “change the subset of the390

reference vector vn”, while the other n − 1 generators ui, with 1 ≤ i < n,391

mean “change the subset of vector vi”.392

We graphically compare the Cayley graphs of the redundant and non-393

redundant representations by showing them in, respectively, Figures 1 and 2.394

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1101

1100

1010

1110

1011

1111

u1

u2

u3

u4

Figure 1: Cayley graph G1 for the redundant repr. (i.e., using the generating set U)

000

001

010

011

100

101

110

111

u1

u2

u3

1

Figure 2: Cayley graph G2 for the non-redundant repr. (i.e., using the generating set Û)

15

Figure 1 depicts the Cayley graph G1 of the redundant representation for395

the case n = 4. The edge colors correspond to the generators in U : black is396

u1, blue is u2, green is u3, and cyan is u4. For instance, the solution (0101)397

is connected with the blue edge to the solution (0101) Y u2 = (0001).398

Figure 2 depicts the Cayley graph G2 of the non-redundant representation399

for the same search space with four MDTWNPP vectors. Here, all the bit-400

strings have length three. The edge colors correspond to the generators of401

the new generating set Û : black is u1, blue is u2, green is u3, and the newly402

introduced generator 1 is depicted in red. Importantly, each vertex in G2403

corresponds to two vertices in G1. For instance, the vertex (000) in G2404

corresponds to the vertices (0000) and (1111) in G1, because both represents405

the partition {{v1, v2, v3, v4}, ∅}. Moreover, confirming our previous example,406

we have that, in G2, the vertex (111) is now only one edge away from (000).407

Importantly, since the generating set is slightly changed, a new factoriza-408

tion algorithm for (Bm,Y, Û) is required. Anyway, it is a simple modification409

of what is described in Section 4.1. Its working scheme is provided in Al-410

gorithm 2 and described as follows. Given the x ∈ Bm in input, lines 2–3

Algorithm 2 Factorization algorithm for the non-redundant representation

1: function Factorization(x ∈ Bm)
2: t0 ← number of 0-bits in x
3: t1 ← number of 1-bits in x
4: if t1 ≤ t0 then
5: Ûx ← {ui ∈ U : x(i) = 1}
6: else if t1 > t0 + 1 then
7: Ûx ← {1} ∪ {ui ∈ U : x(i) = 0}
8: else . Here t1 = t0 + 1
9: r ← random value in [0, 1)

10: if r < 0.5 then
11: Ûx ← {ui ∈ U : x(i) = 1}
12: else
13: Ûx ← {1} ∪ {ui ∈ U : x(i) = 0}
14: end if
15: end if
16: return Ûx
17: end function

411

calculate in t0 and t1 the number of, respectively, 0-bits and 1-bits of x.412

Then, the factorization Ûx is computed as the shorter between: (i) taking413

16

the generators from U which correspond to the positions of the 1-bits in x414

(lines 4–5), and (ii) considering the “all ones” generator 1 and taking the rest415

of the generators from U according to the 0-bits in x (lines 6–7). The last416

part in lines 8–14 tackles the case where the two choices have equal length,417

so one of them is randomly chosen.418

Let also note that, using the new generating set Û , the weight of any419

x ∈ Bm, i.e., |x| = |Factorization(x)|, does not correspond anymore to the420

Hamming weight. Moreover, the maximum distance in the search space is421

now dm/2e.422

Finally, by considering the new generating set, its factorization algorithm423

and the induced weight function, the operations ⊕,	,� continue to work424

as previously described, though their semantic interpretation is now in line425

with the phenotypic space of the MDTWNPP binary partitions.426

4.3. Search characteristics of the binary differential mutation in iMADEB427

Here we analyze the implementation of the binary algebraic differential428

mutation provided in equation (6) for the newly introduced non-redundant429

representation.430

Let describe the computation of the mutant yi ← xi⊕F � (xr1 	 xr2) by
means of an illustrative example. Let consider n = 8 (thus m = 7 and v8 is
the reference vector), F = 0.66 and the following assignments for xi, xr1 , xr2 :

xi = (0101010),
xr1 = (0010010),
xr2 = (1101110).

We analyze the mutation equation from right to left, thus we start by
observing that xr1 and xr2 represent the MDTWNPP partitions

(S
xr1
0 = {v1, v2, v4, v5, v7, v8}, S

xr1
1 = {v3, v6}),

(S
xr2
0 = {v3, v7, v8}, S

xr2
1 = {v1, v2, v4, v5, v6}).

Their genotypic difference is δ = xr1 	 xr2 = xr1 Y xr2 = (1111100) and,431

using Algorithm 2, is factorized as Ûδ = {u6, u7,1}. In fact, it is easy to see432

that (S
xr1
0 , S

xr1
1) can be obtained from (S

xr2
0 , S

xr2
1) by changing the subset433

of the MDTWNPP vectors corresponding to the generators in Ûδ, i.e., the434

vectors v6, v7 and v8. Therefore, the weight of the difference bit-string is435

|δ| = |Ûδ| = 3.436

17

Now, in order to compute the scalar multiplication F � δ = 0.66� δ, we437

need to randomly select d0.66 · |δ|e = 2 generators from Ûδ. Let suppose we438

take the generators u6 and u7 from Ûδ, then 0.66� δ = u6 Y u7 = (0000011).439

Finally, yi = xi ⊕ (F � δ) = (0101010) Y (0000011) = (0101001). Here, it
is interesting to note that, in accordance with the generators in the decom-
position of F � δ, the last two bits of xi are flipped. Moreover, let observe
that xi encodes the partition

(Sxi0 = {v1, v3, v5, v7, v8}, Sxi1 = {v2, v4, v6}),

while the mutant yi represents the partition

(Syi0 = {v1, v3, v5, v6, v8}, Syi1 = {v2, v4, v7}).

As expected, (Syi0 , S
yi
1) is obtained from (Sxi0 , S

xi
1) by changing the subset of440

the MDTWNPP vectors v6 and v7.441

In general, we have that the number of vectors which change subset in442

the partition represented by xi is given by the weight of the scaled difference443

between xr1 and xr2 . Moreover, the vectors which are allowed to change444

subset in the partition corresponding to xi are those which appear in different445

subsets in the partitions represented by xr1 and xr2 .446

Furthermore, it is worthwhile to note that most of the binary crossovers447

in the literature are somehow special cases of our binary differential muta-448

tion. Let think for example to the very popular uniform crossover, one-point449

crossover or the more general k-points crossover (Pavai and Geetha, 2016).450

All of them, when applied to two generic bit-strings x and y, produce an451

offspring z such that its j-th bit z(j) is equal to either x(j) or y(j). It is easy452

to see that the computation of an offspring with such a property can be easily453

reproduced in the algebraic framework as z = x⊕F � (y	x) and by setting454

F ∈ [0, 1]. Therefore, binary crossovers are special cases of our differential455

mutation. This motivates the absence of a crossover operator in iMADEB,456

which in turn is the reason of why we have chosen the DE mutation variant457

where the current individual xi is used as base solution to be mutated (Storn458

and Price, 1997).459

5. Lévy flight adaptation460

The exploration strength of iMADEB is regulated by the scale factor461

parameter F of equation (6). In the following, after analyzing the impact of462

18

F on the search, we introduce a self-adaptive scheme built on the basis of463

the Lévy flight concept (Viswanathan et al., 1999).464

During iMADEB evolution it may happen that the population reaches465

the consensus on a generic bit j – i.e., all individuals have their j-th bit set466

to the same value –, hence the decomposition of a binary difference between467

any pair of population individuals provably cannot include the generator468

corresponding to bit j. Therefore, by setting the scalar factor F ∈ (0, 1]469

– as usual in the numeric DE literature (Storn and Price, 1997) – the j-470

th bit of the base individual xi cannot be flipped anymore by the binary471

differential mutation. From one hand, this aspect allows the search to focus472

an a “consensus subspace” learned during the evolution but, on the other473

hand, it may bring to a premature convergence to sub-optimal solutions.474

Fortunately, the scalar multiplication by a scale factor F > 1 extends475

the binary difference xr1	xr2 by introducing generators corresponding to its476

0-bits, thus the binary differential mutation can now flip a bit value of xi,477

even if the population has reached consensus on it. Therefore, setting F > 1478

may allow to escape stagnation states, but it may result in random search479

behaviours if a large value is used.480

What is required is to regulate F dynamically during the search in such481

a way that: most of the times F is set to small values in order to make the482

search focus on the nearby areas of the current population, while occasion-483

ally larger values are used to prevent premature convergence to sub-optimal484

regions. It is interesting to notice that this is the typical motion pattern of485

the Lévy flight processes, which have been observed in many natural and486

artificial systems (Viswanathan et al., 1999; Iacca et al., 2020; Tomassini,487

2016). Lévy flight processes are based on the Lévy distribution, whose den-488

sity function decays in asymptotic power-law form. Although the Lévy law489

covers a wide class of distributions, in this work we adopt the simplified case,490

as used also in (Tomassini, 2016), where the scale factor values are drawn491

from a power-law probability distribution.492

The adaptation mechanism of iMADEB is also based on the popular jDE493

scheme (Brest et al., 2006) – as used in our previous proposal (Santucci et al.,494

2019) – and it works as follows. Every population individual xi maintains its495

own Fi value. The mutant yi is computed using a scale factor Ftrial which:496

with probability 0.9 is set to Fi, otherwise it is randomly generated according497

to the power-law distribution with density φ(F), as defined below. The498

mutant yi undergoes local search giving rise to the offspring individual zi that,499

if fitter, besides replacing xi in the population, it also updates Fi to Ftrial.500

19

The power-law density φ(F) is set such that the sampled scale factors
are larger than Fmin and no upper bound is given, i.e., F ∈ [Fmin,+∞).
Formally,

φ(F) =
α− 1

F 1−α
min

· F−α, (7)

where: the first factor is a normalization factor that depends on the value501

of Fmin which is fixed to 0.1 as in (Brest et al., 2006), while α > 1 is a502

parameter that regulates how quickly the probability density fades away when503

F increases.504

0 10 20 30 40 50
F

10 7

10 5

10 3

10 1

101

(F
)

= 1.5
= 2
= 3

Figure 3: Power-law density (in log-scale) for α ∈ {1.5, 2, 3}

The behaviour of φ(F), for α ∈ {1.5, 2, 3}, is depicted in Figure 3, which505

shows that the probability density is larger for small values of F close to 0.1506

but, importantly, remains positive for larger F values, thus allowing iMADEB507

to occasionally generate mutant solutions far away from the current popula-508

tion.509

6. Variable Neighborhood Descent510

In iMADEB, a parameter pLS ∈ [0, 1] regulates the probability that a mu-511

tant individual undergoes a local search phase, implemented using a variable512

neighborhood descent scheme. Besides the probabilistic application strategy,513

other differences with respect to our previous proposal (Santucci et al., 2019)514

are: a new neighborhood definition and the best-improvement exploration515

scheme.516

20

The VariableNeighborhoodDescent procedure takes in input a mutant517

y ∈ Bn−1 and returns an (hopefully) improved solution z ∈ Bn−1 which is a518

common local minimum with respect to the two neighborhoods N1 and N1.5,519

defined as follows.520

N1 is the classic 1-change neighborhood. Given y ∈ Bn−1, which encodes521

the binary partition (S0, S1) (as defined in Section 3), N1(y) is the set of par-522

titions that can be obtained from (S0, S1) by changing the subset of exactly523

one MDTWNPP vector, which moves either from S0 to S1 or in the opposite524

direction. Formally, by considering the generating set Û defined in Section 4,525

N1(y) = {y Y u : u ∈ Û}. Hence, |N1(y)| = n, for any y ∈ Bn−1.526

N1.5 is a restricted 2-change neighborhood, defined in a similar way as527

in (Rodriguez et al., 2017). Given the current solution y ∈ Bn−1 and its528

corresponding partition (S0, S1), then N1.5(y) contains the partitions which529

can be obtained from (S0, S1) by simultaneously changing the subset of two530

MDTWNPP vectors v and w such that: v belongs to the larger subset be-531

tween S0 and S1, while w is selected as the most similar vector to v in the532

other subset, in terms of the L∞ distance defined as in equation (1). Clearly,533

also N1.5(y) can be algebraically expressed as y xored with two suitable gen-534

erators from Û .535

N1.5 replaces the full 2-change neighborhood N2 used in our previous536

proposal (Santucci et al., 2019). This choice is motivated by the fact that537

the size of N1.5 is linear in n, while that of N2 is quadratic. In fact, |N1.5(y)|538

depends from the current solution y and: it is 0 when one of the partition539

subsets of y is empty, otherwise it is equal to the size of largest partition540

subset. Hence, n/2 ≤ |N1.5(y)| < n for any y ∈ Bn−1 such that y 6= 0.541

Moreover, the 2-change moves allowed by N1.5(y) are those which modify542

the objective value of y as little as possible, thus allowing a smoother explo-543

ration of the search landscape. In fact, note that the L∞ distance, used to544

select the pair of MDTWNPP vectors to swap, is used also in the objective545

function formulation given in equation (2). This is an important difference546

with respect to the restricted neighborhood proposed in (Rodriguez et al.,547

2017), where the Euclidean distance – unrelated with MDTWNPP objective548

function – is adopted.549

The pseudocode of VariableNeighborhoodDescent is given in Algo-550

rithm 3, where it is possible to see that the two neighborhoods N1 and N1.5551

are alternatively explored until no improving solution is obtained.552

Since both neighborhoods have a linear size, we decided to use a more553

thorough best-improvement search, i.e., the neighborhoods are fully explored554

21

Algorithm 3 Pseudocode of VariableNeighborhoodDescent

1: function VariableNeighborhoodDescent(y ∈ Bn−1)
2: repeat . Outer loop on both N1 and N1.5

3: yold ← y
4: repeat . Loop on N1

5: x← y
6: y ← arg minz∈N1(y) f(z)
7: until f(y) ≥ f(x)
8: y ← x
9: repeat . Loop on N1.5

10: x← y
11: y ← arg minz∈N1.5(y) f(z)
12: until f(y) ≥ f(x)
13: y ← x
14: until f(y) = f(yold)
15: return y
16: end function

and the best neighbor is considered as trial solution (lines 6 and 11).555

Finally, it is important to note that the evaluation of a neighbor is not556

made from scratch, but incrementally with respect to the incumbent solution.557

In fact, by maintaining the two partial subset sums of the current solution, it558

is possible to calculate the objective value of a N1 neighbor by means of one559

vector addition, one vector subtraction and one distance computation. All560

these operations cost Θ(d) time. Therefore, every iteration of the loop in lines561

4–7 costs Θ(nd) operations. Furthermore, for the N1.5, we can precompute –562

at the beginning of an iMADEB execution – the distances among all the pairs563

of MDTWNPP vectors, thus a neighbor evaluation can be done by means of:564

two vector additions, two vector subtractions and one minimum computation565

in order to find the closest vector in the other subset. This last operation566

costs Θ(n) time. Therefore, every iteration of the loop in lines 9–12 costs567

Θ(n ·max{n, d}) operations.568

7. Experiments569

In order to analyze iMADEB and assess its effectiveness, a number of570

experiments have been held by considering commonly adopted benchmark571

instances for the MDTWNPP.572

22

The algorithm has been implemented in C++ and all the experiments573

have been carried out on a machine equipped with an Intel Xeon E312 clock-574

ing at 2.2 GHz, 16 GB of RAM and running Linux Ubuntu 18.04.575

The iMADEB parameters have been experimentally tuned and analyzed576

as described in Section 7.1. Then, the calibrated iMADEB setting has been577

experimentally compared with the other state-of-the-art algorithms. This578

comparison is described and discussed in Section 7.2.579

7.1. Tuning and analysis of the iMADEB parameters580

iMADEB has three parameters to be set: the population size N , the Lévy581

flight parameter α, and the local search application probability pLS. After a582

series of preliminary experiments, a discrete set of values has been selected583

for each parameter. Then, a full factorial experiment has been carried out for584

selecting the most effective setting and analyzing the robustness of iMADEB.585

For each parameter, the chosen values are:586

• N ∈ {50, 100, 150, 200},587

• α ∈ {1.5, 2, 3},588

• pLS ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.589

These 4×3×5 = 60 settings of iMADEB have been experimented on a set590

of 16 benchmark instances: one instance for every n, d problem configuration,591

with n ∈ {20, 100, 300, 500} and d ∈ {2, 5, 15, 20}. To avoid the over-tuning592

phenomenon, the tuning instances have been generated in such a way they593

are representative of the test instances, but different from them. Hence, a594

matrix of 500× 20 numbers is randomly generated and sub-sampled for the595

different values of n and d, as done in (Kojić, 2010) for producing the test596

suite adopted in this work (see Section 7.2) and in all the previous works in597

the MDTWNPP literature (see Section 2).598

Every iMADEB setting has been executed 25 times per instance with a599

computational budget of 240 seconds per execution. Therefore, 24000 ex-600

ecutions have been carried out for a total of 9600 hours of computational601

time.602

The performance of each iMADEB setting S, on every instance i, is
measured by the commonly adopted average relative percentage deviation

23

(ARPD) index, defined as

ARPDSi =
1

25

25∑
j=1

S
j
i − Besti

Besti
× 100, (8)

where S
j
i is the objective value obtained by the iMADEB setting S in its j-th603

run on the instance i, and Besti is the best objective value achieved among604

all the performed executions on instance i.605

First of all, we analyze the impact of any single parameter setting on606

the effectiveness of iMADEB. With this regard, in Figure 4 we provide three607

box-plot graphs – one for each parameter – which graphically summarize the608

ARPDs obtained varying each parameter value.609

50 100 150 200

0
1

2
3

4
5

6

N

A
R

P
D

(a) Population size N

1.5 2 3

0
1

2
3

4
5

6

α

A
R

P
D

(b) Lévy-flight parameter α

0.1 0.25 0.5 0.75 0.9

0
1

2
3

4
5

pLS

A
R

P
D

(c) Local search prob. pLS

Figure 4: Box-plot graphs from the calibration of the three iMADEB parameters

Figure 4a shows that a population size of N = 200 is to be preferred,610

though its impact on the effectiveness of an iMADEB execution is not as611

large as it is for the setting α = 3. In fact, Figure 4b clearly shows that612

the α parameter has an important role. By recalling the behaviour of the613

probability density shown in Figure 3, the top performances obtained with614

α = 3 suggest that iMADEB prefers to intensify the search in the nearby615

of the current population individuals and, only very occasionally, exploring616

distant areas in the space. Conversely from the previous cases, Figure 4c617

shows that iMADEB executions are robust throughout different settings of618

the pLS parameter.619

In order to validate these considerations, we statistically analyzed the620

results presented in Figure 4 by means of the Kruskal-Wallis H test (Hol-621

lander et al., 2013). One test is performed for every parameter aiming at622

24

understanding if the difference in the observed performances is statistically623

significant or not.624

For the population size N , the statistical test returned a p-value of 0.01,625

thus confirming that a good setting for the population size is significant in626

order to obtain good performances. For the parameter α the significance is627

even stronger, since the returned p-value is smaller than 10−5, while the very628

large p-value (0.99) obtained for pLS confirms that the local search applica-629

tion probability does not impact too much the effectiveness of iMADEB.630

Aiming to analyze the complete parameters configurations, in Table 1631

we provide the top performing iMADEB settings, ordered by average rank,632

together with their overall ARPDs. The average rank of any setting S is633

computed by averaging the ranks obtained by S – among the 60 different634

settings – throughout all the 16 tuning instances.635

Moreover, we carried out the Friedman statistical test (Hollander et al.,636

2013) which returned an almost zero p-value, thus indicating statistical dif-637

ferences among the 60 settings. Hence, a post-hoc analysis has been con-638

ducted by considering all the Friedman post-hoc procedures available in the639

statistical package scikit-posthocs (Terpilowski, 2019) and selecting the640

most discriminating one that, in our case, was the Siegel and Castellan test641

with the Benjamini/Hochberg p-value adjustment scheme (Hollander et al.,642

2013; Terpilowski, 2019). Therefore, in Table 1 we list the largest set of643

top performing settings which are not statistically different to each other, by644

considering a significance threshold of 0.05. Moreover, we also provide the645

post-hoc p-values of the pairwise comparisons between the best setting and646

the other ones.647

From Table 1 it is possible to see that 15 settings, out of 60, do not show648

significant performance differences with respect to each other, thus indicating649

a good robustness of iMADEB. Moreover, it is interesting to observe that:650

all the 15 settings in Table 1 have α = 3, while the top five settings have651

N = 200 and all the possible values for pLS. These observations clearly652

confirm the previously discussed analyses. Let also note that the ARPDs653

in Table 1, though not being in a perfectly monotonic relationship with the654

average ranks, show a negligible variance – the largest is only 1.2 percentage655

points larger than the smallest –, thus further confirming the overall good656

robustness of iMADEB.657

Finally, the best setting of parameters is (N = 200, α = 3, pLS = 0.9),658

which reached the lowest average rank of 5.06. Therefore, this is the set-659

ting used for the experimental comparison discussed in Section 7.2.660

25

Table 1: The 15 most performing iMADEB settings ordered by average rank

Setting Average Overall Post-hoc
N α pLS Rank ARPD p-value

200 3.0 0.90 5.06 1.84 best
200 3.0 0.25 5.09 1.74 0.41
200 3.0 0.10 5.09 1.60 0.41
200 3.0 0.75 5.50 1.85 0.40
200 3.0 0.50 5.62 1.67 0.40

150 3.0 0.10 7.69 1.94 0.31
150 3.0 0.25 8.25 1.92 0.29
150 3.0 0.50 9.88 2.27 0.22
150 3.0 0.90 9.97 2.31 0.21
100 3.0 0.50 11.16 1.63 0.17
150 3.0 0.75 11.34 2.18 0.16
100 3.0 0.25 12.62 2.80 0.12
100 3.0 0.10 12.97 1.97 0.11
100 3.0 0.75 14.03 2.47 0.09
100 3.0 0.90 14.41 2.39 0.08

7.2. Experimental comparison with the state-of-the-art algorithms661

In order to compare the effectiveness of iMADEB with respect to the662

other state-of-the-art algorithms for the MDTWNPP, the set of benchmark663

instances proposed in (Kojić, 2010), and adopted in all the other works in664

the MDTWNPP literature (see Section 2), is considered. The benchmark665

suite is formed by a total of 210 instances: five for any problem configuration666

n, d such that n ∈ {50, 100, 200, 300, 400, 500} and d ∈ {2, 3, 4, 5, 10, 15, 20}.667

iMADEB has been executed using the setting of parameters identified in668

Section 7.1 and it is compared with the two state-of-the-art algorithms to669

date: MADEB (Santucci et al., 2019) and GRASP+ePR (Rodriguez et al.,670

2017). In order to perform a fair comparison, all the three algorithms have671

been executed on the same machine and using the same budget of compu-672

tational time. Moreover, the executable code of GRASP+ePR has been got673

from the website provided by the authors (https://sci2s.ugr.es/MDTWNP),674

and both GRASP+ePR and MADEB have been run with the parameters set-675

tings suggested in, respectively, (Santucci et al., 2019) and (Rodriguez et al.,676

2017).677

26

Each algorithm has been executed 25 times per instance with a budget678

of 600 seconds per execution. Therefore, 15750 executions have been carried679

out for a total of 2625 hours of computational time.680

For each algorithm, we have computed its ARPD measures which are also681

used to rank the algorithms on every instance, then the ranks are averaged682

and shown in Table 2 grouped by n. Table 2 also provides the number of683

instances where an algorithm obtained the best objective value among all684

the executions of every competitors. The best results are indicated in bold,685

while the last line provides the overall average ranks and the total number686

of instances where any algorithm obtained the best solution.687

Table 2: Average ranks and number of best solutions obtained

Average Rank No. Best Solutions
GRASP GRASP

n iMADEB MADEB +ePR iMADEB MADEB +ePR

50 1.74 1.57 2.69 29 6 7
100 1.26 1.77 2.97 32 4 2
200 1.20 1.80 3.00 33 3 0
300 1.17 1.83 3.00 34 1 0
400 1.06 1.94 3.00 35 0 0
500 1.11 1.89 3.00 35 1 0

Overall 1.26 1.80 2.94 198 15 9

Overall, Table 2 clearly shows that iMADEB outperformed its competi-688

tors in terms of both average and peak results. In fact, its overall average689

rank is 1.26 – very close to the optimal ideal value of 1 –, while it obtained690

the best solution on 198 out of 210 instances, i.e., more than the 94% of the691

benchmark suite.692

Moreover, it is interesting to note that iMADEB consistently outper-693

formed GRASP+ePR, both in terms of average ranks and number of best694

solutions, across all the different values of n. The same is true also when695

compared with respect to its predecessor MADEB that, anyway, obtained a696

slightly better average rank in the case n = 50. However note that, in the697

same group of instances, iMADEB obtained a consistently larger number of698

best solutions, thus indicating that, when n is relatively small, iMADEB is699

not as robust as for larger instances, but anyway able to obtain the best peak700

performances.701

27

In order to better compare the effectiveness of the three algorithms, in702

Figure 5 we provide the box-plot graphs which graphically summarize the703

ARPDs obtained by varying both the instance parameters n (Figure 5a) and704

d (Figure 5b). For the sake of presentation, the logarithm of the ARPD705

values is considered.706

−
4

−
2

0
2

4
6

8

n

lo
g(

A
R

P
D

)

50 100 200 300 400 500

iMADEB
MADEB
GRASP+ePR

(a) log(ARPD) with instances grouped by n

−
4

−
2

0
2

4
6

8

d

lo
g(

A
R

P
D

)

2 3 4 5 10 15 20

iMADEB
MADEB
GRASP+ePR

(b) log(ARPD) with instances grouped by d

Figure 5: Box-plot graphs of the log(ARPD) measure with instances grouped by n and d

Both box-plots show that iMADEB is considerably more effective than707

GRASP+ePR. Moreover, Figure 5a largely confirms all the indications given708

by the average ranks, while Figure 5b shows that iMADEB obtained better709

median results for every value of d, except the case d = 20 where it is710

outperformed by its predecessor MADEB.711

In order to validate these considerations, we statistically analyzed the712

comparisons by running two pairwise Wilcoxon tests (Hollander et al., 2013)713

– iMADEB vs MADEB and iMADEB vs GRASP+ePR – on every group of714

instances aggregated as in Figure 5.715

Grouping the instances by n, iMADEB significantly outperformed both716

competitors when n ≥ 100. In these cases, the largest p-value observed717

is smaller than 0.003. Conversely, for n = 50 – where MADEB obtained718

slightly better results – the differences in performances are not statistically719

significant. In fact, the p-value of the comparison with MADEB has the very720

large p-value of 0.59, while that with respect to GRASP+ePR is 0.06.721

28

Grouping the instances by d, iMADEB significantly outperformed both722

competitors when d ≤ 10. In these cases, the largest p-value is smaller than723

5 · 10−4. When d = 15, iMADEB significantly outperforms GRASP+ePR724

(with a p-value of 0.002), while it is statistically indistinguishable from725

MADEB (with a p-value of 0.50). The only case where iMADEB is signifi-726

cantly outperformed is in the group of instances with d = 20, where MADEB727

obtained a better median ARPD and the Wilcoxon test returned a p-value728

of around 10−4.729

Importantly, two additional Wilcoxon tests have been also conducted by730

considering the whole set of instances: iMADEB signficantly outperformed731

both MADEB and GRASP+ePR with p-values very close to zero.732

For the sake of completeness, in Table 3 we provide, for all the 210733

instances, the average and best objective values obtained by the three al-734

gorithms considered in our experimentation. For each instance it is also735

reported the previously best known objective value (by considering all the736

works described in Section 2). Best results are indicated in bold, while the ob-737

jective values which improves the previously best known solutions are marked738

with an asterisk.739

In particular, it is interesting to observe this last datum: iMADEB ob-740

tained 145 new best known solutions, i.e., around the 69% of the benchmark741

suite. Moreover, few new best known solutions have been obtained by our742

new executions of MADEB (5) and GRASP+ePR (2). In conclusion, Table 3743

provides a comprehensive perspective of the state-of-the-art results for the744

most used MDTWNPP benchmark suite at the time of writing.745

8. Conclusion and Future Work746

In this work, we have proposed a new memetic algorithm for the MultiDi-747

mensional Two-Way Number Partitioning Problem (MDTWNPP), namely748

iMADEB, which adopts an algebraic differential mutation operator for ex-749

ploring the search space and providing new seed solutions to a local search750

phase implemented as a variable neighborhood descent procedure.751

Our proposal is motivated by a critical analysis of the MDTWNPP liter-752

ature. In fact, all the previously proposed meta-heuristics adopt a redundant753

representation scheme for the solutions and do not consider the intrinsic char-754

acteristics of the MDTWNPP objective function in the design of the local755

search neighborhoods.756

29

Table 3: Detailed experimental results on all the 210 instances

Instance
Average Obj. Values Best Obj. Values Previous

iMADEB MADEB
GRASP

iMADEB MADEB
GRASP Best

+ePR +ePR Solution

50 2a 0.61 0.48 0.95 0.45 0.45 0.45 0.45
50 2b 1.42 3.29 6.54 0.26 ∗ 0.26 3.09 1.62
50 2c 1.31 2.88 6.10 1.17 ∗ 1.17 3.09 2.48
50 2d 1.44 1.48 2.92 1.34 ∗ 1.34 1.34 1.34
50 2e 3.23 4.32 6.78 0.62 ∗ 2.63 2.94 2.94

50 3a 277.12 288.32 292.10 236.42 ∗ 282.22 285.27 283.56
50 3b 302.33 307.21 345.91 287.40 ∗ 302.63 308.74 305.68
50 3c 136.08 142.17 147.21 118.52 ∗ 139.88 142.94 139.88
50 3d 93.60 99.31 104.22 81.14 ∗ 93.36 96.41 96.41
50 3e 205.19 212.56 216.80 187.39 ∗ 208.75 211.79 198.85

50 4a 900.71 905.80 941.98 894.51 900.61 903.66 783.05
50 4b 1217.30 1221.82 1249.66 1198.17 1216.49 1222.59 1017.28
50 4c 442.24 453.68 456.52 421.50 ∗ 448.95 452.01 452.01
50 4d 1011.45 1019.49 1024.80 1000.26 1015.52 1018.58 987.27
50 4e 1193.75 1204.30 1215.75 970.11 ∗ 1202.62 1202.62 1187.27

50 5a 920.32 922.81 1283.06 917.01 920.06 920.06 917.01
50 5b 2609.12 2670.97 3186.74 2600.99 ∗ 2613.19 2616.25 2607.09
50 5c 1394.91 1402.28 2471.71 1386.57 ∗ 1398.77 1410.98 1395.72
50 5d 2269.08 2271.98 2274.20 2260.52 2269.69 2269.69 2183.63
50 5e 3959.34 4404.84 4608.16 3649.46 ∗ 3655.57 4441.06 3652.52

50 10a 16273.64 16175.67 16423.06 16170.50 16173.50 16173.52 15722.29
50 10b 19782.24 19553.17 20356.29 19548.10 ∗ 19551.20 19557.26 19548.10
50 10c 17117.30 17392.40 17687.80 14131.60 14134.70 14134.69 14125.54
50 10d 16960.89 14924.10 17121.38 14918.90 14918.90 14921.98 14915.87
50 10e 16834.22 15364.59 16504.30 15356.80 15359.90 15356.80 14527.38

50 15a 38593.84 33523.49 34942.80 33208.00 33208.00 33211.07 30728.55
50 15b 39556.42 36385.14 36825.77 33240.10 34700.80 33240.09 ∗ 33240.09
50 15c 40996.84 32470.97 35748.85 29920.90 29456.90 29456.85 28736.38
50 15d 35572.00 25222.35 28584.60 21649.80 21652.80 21655.89 20356.84
50 15e 37501.69 34565.42 35754.56 25003.80 ∗ 31800.70 31800.69 29018.28

50 20a 61084.24 56919.47 58485.54 55685.60 52826.30 52826.34 50647.84
50 20b 63479.59 55173.79 58729.66 53898.60 51917.90 51917.90 50382.38
50 20c 63775.68 54141.94 57999.14 50560.90 50560.90 50560.86 50560.86
50 20d 61134.74 56093.25 56785.88 53956.00 53956.00 53955.96 51538.57
50 20e 61339.02 51239.31 57688.77 48281.50 48281.50 48281.50 47829.86

Instance
Average Obj. Values Best Obj. Values Previous

iMADEB MADEB
GRASP

iMADEB MADEB
GRASP Best

+ePR +ePR Solution

100 2a 0.62 11.07 17.90 0.44 ∗ 7.68 15.35 4.60
100 2b 0.77 0.83 2.91 0.56 ∗ 0.56 0.85 0.57
100 2c 0.62 1.16 5.75 0.26 ∗ 0.26 2.28 0.26
100 2d 0.00 0.00 1.76 0.00 0.00 0.00 0.00
100 2e 1.04 1.07 1.52 0.70 1.06 1.07 0.40

100 3a 105.45 120.95 128.06 84.00 ∗ 115.00 124.15 115.00
100 3b 76.90 89.55 99.04 60.20 ∗ 82.68 88.78 88.78
100 3c 166.81 227.24 263.40 58.94 ∗ 216.26 234.56 68.11
100 3d 228.34 238.67 248.79 216.53 ∗ 234.83 231.78 234.83
100 3e 115.47 135.00 144.10 94.58 ∗ 129.20 138.36 132.25

100 4a 493.91 508.29 520.13 467.26 ∗ 502.18 511.35 508.28
100 4b 868.16 878.82 998.51 845.10 ∗ 872.55 887.81 875.60
100 4c 872.34 899.24 906.17 752.64 ∗ 892.98 902.13 892.98
100 4d 1079.43 1092.10 1099.27 1056.55 ∗ 1087.06 1093.17 1090.12
100 4e 483.89 510.27 518.79 444.20 ∗ 505.24 514.39 502.28

100 5a 2410.86 2426.38 2991.69 2386.55 2420.12 2429.28 2347.35
100 5b 2064.91 2075.95 2356.14 2050.15 ∗ 2068.48 2083.73 2077.63
100 5c 2751.22 2813.46 2832.25 2742.26 ∗ 2785.91 2817.96 2757.52
100 5d 2941.45 2968.92 2975.08 2628.09 ∗ 2966.78 2966.78 2637.39
100 5e 2528.46 3771.42 3778.00 2422.43 ∗ 3764.89 3770.99 2440.74

100 10a 15990.02 15995.22 16616.69 15980.60 15986.70 15986.68 15792.74
100 10b 13589.79 13595.95 17929.94 13575.90 ∗ 13588.20 13591.20 13591.20
100 10c 11985.23 14221.92 15387.30 11968.80 ∗ 11993.20 15377.41 11984.02
100 10d 14962.60 15550.88 16863.09 14882.90 ∗ 15543.90 15543.85 14898.14
100 10e 12180.65 15100.11 16132.32 12169.90 ∗ 12176.00 15822.36 12179.01

100 15a 31994.82 32151.06 33340.65 31091.80 31113.10 32152.39 30286.52
100 15b 29940.16 28980.29 31940.31 28699.40 28711.60 28711.59 27893.84
100 15c 32038.63 32885.44 34143.51 29784.70 31121.50 31115.38 29778.60
100 15d 32055.68 31757.74 34330.90 30687.90 ∗ 30687.90 ∗ 30690.91 30690.91
100 15e 31007.17 30374.22 32501.96 28898.70 30250.60 30256.44 28393.88

100 20a 54534.58 52436.03 55359.41 49333.70 49336.80 50231.79 43945.36
100 20b 55136.75 53703.14 56596.52 49833.10 48349.00 45409.02 ∗ 45673.84
100 20c 54213.54 51745.85 56007.33 48775.40 46340.70 46598.68 44839.37
100 20d 53899.90 50172.85 53883.93 47457.40 43789.70 47454.38 43786.66
100 20e 54445.41 51616.68 55913.30 46151.00 48095.10 49691.05 43923.29

Instance
Average Obj. Values Best Obj. Values Previous

iMADEB MADEB
GRASP

iMADEB MADEB
GRASP Best

+ePR +ePR Solution

200 2a 0.25 0.93 11.44 0.03 ∗ 0.45 3.77 0.44
200 2b 0.55 0.65 2.24 0.36 ∗ 0.56 0.86 0.56
200 2c 0.53 0.63 2.57 0.22 0.30 0.70 0.00
200 2d 0.62 0.67 3.67 0.23 ∗ 0.43 0.67 0.24
200 2e 0.43 0.44 1.78 0.27 ∗ 0.27 0.45 0.44

200 3a 96.46 172.97 188.88 66.79 ∗ 163.06 175.27 85.10
200 3b 86.12 129.95 140.51 51.65 ∗ 125.37 131.48 71.38
200 3c 1.57 2.13 5.13 1.51 ∗ 1.52 1.52 1.52
200 3d 35.01 104.78 118.05 25.69 ∗ 99.30 111.50 47.04
200 3e 77.66 103.45 201.57 43.90 ∗ 90.02 191.32 83.57

200 4a 481.98 509.55 1160.65 460.72 ∗ 503.44 1144.04 494.29
200 4b 1049.55 1167.65 1179.58 890.57 ∗ 1157.73 1169.94 914.98
200 4c 2.49 2.82 5.55 1.51 ∗ 1.52 3.05 3.05
200 4d 665.40 994.38 1065.87 588.22 ∗ 987.61 1015.07 685.87
200 4e 458.45 501.92 1232.18 416.18 ∗ 489.70 1223.65 486.65

200 5a 1614.04 1904.98 1943.95 1202.05 ∗ 1897.51 1909.71 1217.32
200 5b 1831.75 1861.72 2624.69 1751.33 ∗ 1855.15 1876.53 1852.11
200 5c 3.00 3.13 6.29 1.52 ∗ 3.05 3.05 3.05
200 5d 2069.86 2119.54 2613.65 1885.14 ∗ 2106.26 2369.47 2112.36
200 5e 1203.18 2935.78 3784.08 1185.27 ∗ 2038.66 3777.25 1212.74

200 10a 16357.65 16445.07 16566.46 16347.60 16362.80 16505.91 16347.58
200 10b 15414.13 17434.35 17795.58 15128.50 15456.60 17782.27 15128.47
200 10c 12778.96 12791.56 16159.14 12767.50 ∗ 12782.70 16149.50 12782.73
200 10d 14195.15 17569.26 18690.38 13101.80 ∗ 17387.20 18098.25 13107.86
200 10e 17115.53 17793.69 17801.03 15905.60 17787.90 17790.89 15896.50

200 15a 29295.89 29398.32 31794.17 28373.90 ∗ 29382.30 29388.40 28389.13
200 15b 30534.78 30474.24 32326.28 30467.50 30458.40 ∗ 30473.64 30467.53
200 15c 30373.10 30474.63 30881.96 30083.70 ∗ 30465.30 30470.06 30464.39
200 15d 24055.90 23563.88 31658.01 22822.70 ∗ 22825.80 22831.88 22834.94
200 15e 29235.59 29024.40 32404.98 28602.50 28602.50 28608.64 27483.37

200 20a 47708.70 46793.39 51427.54 40391.60 42048.50 42066.76 40388.54
200 20b 48847.39 48592.36 51358.95 41671.70 ∗ 42099.30 46026.19 42311.89
200 20c 49039.63 48137.58 50790.92 36926.60 ∗ 41999.80 45571.04 36938.80
200 20d 49267.76 49608.93 50697.35 39539.10 ∗ 41186.90 41168.59 39539.13
200 20e 49550.85 48439.67 51614.55 41777.30 37156.10 ∗ 41777.28 39408.54

Instance
Average Obj. Values Best Obj. Values Previous

iMADEB MADEB
GRASP

iMADEB MADEB
GRASP Best

+ePR +ePR Solution

300 2a 0.19 0.20 1.28 0.18 ∗ 0.19 0.20 0.20
300 2b 0.50 0.58 2.14 0.18 ∗ 0.55 0.79 0.44
300 2c 0.48 0.68 2.98 0.08 ∗ 0.34 0.75 0.08
300 2d 0.31 0.58 2.82 0.16 ∗ 0.23 0.68 0.43
300 2e 0.45 0.69 2.22 0.19 ∗ 0.31 0.92 0.31

300 3a 1.52 1.68 5.62 1.52 ∗ 1.52 1.52 1.52
300 3b 59.63 77.70 93.38 38.78 ∗ 69.34 79.62 73.52
300 3c 36.27 113.53 254.82 20.81 ∗ 54.37 211.67 53.45
300 3d 27.47 97.94 122.42 16.49 ∗ 62.31 108.45 50.10
300 3e 122.83 165.07 242.67 84.82 ∗ 145.85 185.53 141.67

300 4a 1.93 2.82 7.02 1.52 ∗ 1.53 4.58 3.06
300 4b 850.80 968.63 1069.18 821.10 885.19 1058.92 563.08
300 4c 556.60 884.43 900.00 387.60 ∗ 876.20 882.29 430.31
300 4d 613.39 984.32 1058.87 483.73 ∗ 975.59 1007.45 673.67
300 4e 642.87 877.58 912.45 620.15 ∗ 863.09 893.60 717.82

300 5a 1.98 3.13 7.45 1.52 ∗ 1.53 4.57 3.04
300 5b 2036.89 2111.91 3199.13 1987.76 ∗ 2101.68 2711.21 2018.29
300 5c 891.57 901.96 917.12 874.27 ∗ 889.55 901.75 901.75
300 5d 1873.22 2099.09 2447.68 907.43 ∗ 2081.85 2351.16 1927.34
300 5e 1512.06 1531.80 1571.77 1482.64 ∗ 1516.23 1534.55 1528.44

300 10a 14398.50 14405.05 15364.03 14382.50 14394.70 14406.89 12839.36
300 10b 14841.41 14851.27 16251.03 14823.80 ∗ 14836.00 14860.42 14851.27
300 10c 14093.90 15966.58 15989.48 13843.40 15959.60 15977.88 13843.39
300 10d 12871.28 15821.42 18391.57 10317.40 ∗ 15809.70 17884.70 15812.71
300 10e 15116.39 15292.08 16813.31 14811.80 15279.60 15288.72 14805.66

300 15a 27389.33 27658.07 31796.17 23878.30 ∗ 27436.20 27442.27 27445.32
300 15b 28871.27 29077.31 31040.42 28646.00 ∗ 28854.30 29183.56 28863.48
300 15c 22435.48 26835.85 32004.47 22208.50 ∗ 22217.60 30725.11 22220.71
300 15d 28358.48 32226.38 34265.01 27833.60 ∗ 30415.00 32727.36 27873.22
300 15e 28775.63 28771.88 30621.06 27640.40 ∗ 28754.30 28763.50 28754.34

300 20a 45905.39 45330.07 48198.45 41141.60 41135.50 ∗ 42470.76 41405.18
300 20b 48599.51 46665.25 50529.23 42587.40 ∗ 42986.60 44133.93 44127.83
300 20c 45885.55 44382.21 49212.70 34241.50 ∗ 34253.70 43334.23 34247.61
300 20d 48320.13 47172.10 51162.27 42351.40 ∗ 44799.80 46825.40 42351.44
300 20e 46959.16 46436.68 50098.26 40923.80 43332.00 43350.29 37132.46

Instance
Average Obj. Values Best Obj. Values Previous

iMADEB MADEB
GRASP

iMADEB MADEB
GRASP Best

+ePR +ePR Solution

400 2a 0.07 0.13 7.01 0.07 ∗ 0.08 0.09 0.09
400 2b 0.27 0.48 1.57 0.12 ∗ 0.34 0.59 0.29
400 2c 0.33 0.55 2.76 0.04 ∗ 0.20 0.88 0.22
400 2d 0.35 0.67 3.91 0.04 ∗ 0.63 1.04 0.41
400 2e 0.29 0.37 2.63 0.12 0.27 0.41 0.10

400 3a 60.41 163.36 190.25 15.21 ∗ 152.37 170.69 72.35
400 3b 60.03 132.87 155.63 11.32 ∗ 120.97 136.23 121.23
400 3c 11.93 47.50 241.23 1.48 ∗ 39.10 214.74 45.21
400 3d 165.93 206.58 231.99 108.05 ∗ 198.57 221.22 127.75
400 3e 75.70 146.91 209.79 51.21 ∗ 133.64 170.26 95.18

400 4a 440.72 482.69 1154.91 408.55 ∗ 471.40 1137.94 480.55
400 4b 486.03 536.47 682.44 366.06 ∗ 522.89 550.36 541.21
400 4c 440.83 874.37 900.68 383.02 ∗ 865.52 886.88 437.95
400 4d 548.54 789.44 898.03 264.88 ∗ 779.46 872.84 794.72
400 4e 629.24 868.88 913.59 572.66 ∗ 856.98 887.50 622.38

400 5a 1098.52 1798.36 1910.99 1041.83 ∗ 1191.39 1902.07 1188.32
400 5b 1423.52 1452.66 1471.49 1350.88 ∗ 1445.49 1460.74 1421.07
400 5c 885.53 899.77 916.62 862.47 ∗ 895.64 907.85 902.13
400 5d 1576.54 2467.55 2499.68 1438.67 ∗ 2450.62 2484.18 1646.22
400 5e 1567.76 1586.33 1613.46 1527.90 1573.68 1595.03 1465.10

400 10a 14117.06 14547.91 15203.17 13791.70 14274.80 14809.11 7701.83
400 10b 14812.86 17043.77 18757.56 14526.10 17029.90 17908.98 10827.98
400 10c 11671.89 15589.55 17115.57 10778.50 14503.10 15672.45 9202.61
400 10d 13712.60 13722.33 15201.44 13699.00 13708.10 15176.29 8212.91
400 10e 11547.89 16142.74 16225.97 11528.90 ∗ 16135.10 16147.33 11562.44

400 15a 30206.00 30977.06 33196.13 29097.60 ∗ 30440.80 32383.93 29134.27
400 15b 27782.30 28070.56 32528.68 25859.60 28056.50 28068.73 21278.92
400 15c 26811.97 27133.33 30252.59 26779.00 ∗ 26785.10 26821.74 26812.58
400 15d 25904.86 29986.69 33462.53 22226.10 29973.40 29997.82 16172.37
400 15e 28712.23 30700.24 30927.16 28214.10 ∗ 30111.40 30724.97 28423.13

400 20a 44900.56 45803.69 48755.62 40907.90 41937.70 45628.38 28134.23
400 20b 44106.86 44445.43 48047.22 40322.20 40325.30 43124.38 37938.93
400 20c 45280.90 46655.78 50454.56 41868.70 44834.60 44998.25 32762.87
400 20d 44787.21 44002.46 48454.07 41297.60 41387.50 41396.68 36726.27
400 20e 44206.29 42089.62 48320.45 38942.30 ∗ 39541.10 39535.05 39541.15

Instance
Average Obj. Values Best Obj. Values Previous

iMADEB MADEB
GRASP

iMADEB MADEB
GRASP Best

+ePR +ePR Solution

500 2a 0.12 0.33 2.04 0.11 ∗ 0.12 1.03 0.12
500 2b 0.28 0.54 1.76 0.11 ∗ 0.18 0.57 0.47
500 2c 0.16 0.43 1.91 0.04 ∗ 0.20 1.19 0.58
500 2d 0.20 0.25 2.28 0.18 ∗ 0.20 0.41 0.19
500 2e 0.22 0.50 2.23 0.10 ∗ 0.13 0.92 0.20

500 3a 1.52 1.52 5.74 1.52 1.52 1.52 1.52
500 3b 26.74 103.59 132.52 7.56 ∗ 87.23 120.79 56.23
500 3c 33.71 92.21 181.89 10.45 ∗ 84.04 138.96 68.88
500 3d 1.68 1.83 7.02 1.52 ∗ 1.52 1.53 1.52
500 3e 1.52 1.53 5.98 1.51 ∗ 1.52 1.53 1.52

500 4a 1.83 2.52 7.32 1.52 ∗ 1.52 ∗ 4.57 1.53
500 4b 814.17 1144.45 1173.06 752.87 ∗ 1137.89 1156.23 845.27
500 4c 421.21 619.27 1106.60 241.40 ∗ 599.89 1051.03 606.00
500 4d 1.93 2.14 8.06 1.52 ∗ 1.52 3.04 1.53
500 4e 469.17 529.99 894.14 390.64 ∗ 509.69 611.97 534.12

500 5a 2.44 2.75 7.63 1.52 ∗ 1.52 3.06 3.06
500 5b 1755.66 1837.92 2358.82 1315.21 ∗ 1826.17 1868.89 1841.42
500 5c 1720.18 1870.90 2867.61 1643.04 ∗ 1854.88 2813.88 1879.29
500 5d 2.69 3.74 9.89 1.52 ∗ 1.53 7.62 3.05
500 5e 866.96 2499.49 2650.36 801.92 ∗ 2490.03 2541.92 817.16

500 10a 12896.61 12981.57 14177.87 12874.20 ∗ 12904.80 14159.93 12892.03
500 10b 12107.12 12112.50 12139.25 12088.10 12094.20 12115.56 10387.62
500 10c 12801.53 15239.90 17703.22 12586.30 14570.90 17679.18 10282.30
500 10d 12800.82 12865.19 13296.19 12762.50 ∗ 12845.40 12881.99 12823.52
500 10e 14854.88 15509.74 17445.43 14154.20 ∗ 15499.80 15545.61 14212.20

500 15a 25988.84 25994.29 30473.04 25965.70 25981.00 26032.89 20332.66
500 15b 22739.25 28653.36 31807.62 22215.40 ∗ 22258.10 29375.97 22258.13
500 15c 27116.44 27108.86 29400.01 27094.40 27097.40 27100.48 25461.22
500 15d 26968.94 29582.32 30645.53 26324.00 ∗ 29538.20 29722.39 26351.40
500 15e 26496.11 30150.42 30481.71 24949.10 30140.60 30131.50 21652.01

500 20a 43085.34 42461.60 48147.27 38330.10 38849.70 42063.29 32897.39
500 20b 43108.71 41464.94 48708.93 35488.90 ∗ 36651.00 44350.52 36626.58
500 20c 42599.51 42970.62 48087.84 37584.30 ∗ 37611.80 41591.09 37587.38
500 20d 43664.83 44643.25 48367.82 34696.60 ∗ 42189.00 43972.78 38774.75
500 20e 42412.02 41547.43 46541.12 34812.70 ∗ 39011.40 39026.66 38578.86

30

Therefore, in order to bridge this gap, iMADEB has been designed along757

the following lines:758

• a non-redundant binary representation for the MDTWNPP;759

• an algebraic modeling for the new genotypic space;760

• a self-adaptive mechanism, built on the basis of the Lévy flight concept,761

for regulating the exploration-exploitation balance of the search;762

• a restricted neighborhood which allows a smoother local exploration of763

the space.764

All these aspects are to be considered novelties with respect to previous765

proposals.766

Experiments have been held in order to analyze iMADEB robustness and767

to compare its effectiveness with respect to the other state-of-the-art algo-768

rithms. Regarding robustness, though iMADEB has three parameters to be769

set, the experimental study carried out provides clear and robust indications770

for the practitioners that need to choose an iMADEB setting. Most impor-771

tantly, the experimental comparison with the previously proposed approaches772

clearly show that iMADEB can be considered the new state-of-the-art algo-773

rithm for the MDTWNPP, both in terms of average and peak results. More-774

over, comprehensive experimental data are also provided in order to facilitate775

comparisons.776

Future studies may involve different lines. First of all, it is interesting to777

study which features make an MDTWNPP instance difficult or easy to solve.778

Moreover, the proposed approach can be generalized both to the multiway779

variant of the MDTWNPP and to other partitioning problem such as, for780

example, the graph partitioning problems. Another interesting line of re-781

search is to study the novel algebraic method here proposed for other binary782

optimization problems. Finally, the Lévy flight approach can be extended783

also to other scenarios where an exploration-exploitation balance is required784

in order to automatically regulate the focus of the search.785

References786

Baioletti, M., Milani, A., Santucci, V., 2018. Learning bayesian networks787

with algebraic differential evolution, in: Proc. of 15th Int. Conf. on Par-788

allel Problem Solving from Nature – PPSN XV, Springer International789

Publishing, Cham. pp. 436–448.790

31

Baioletti, M., Milani, A., Santucci, V., 2020. Variable neighborhood algebraic791

differential evolution: An application to the linear ordering problem with792

cumulative costs. Information Sciences 507, 37–52.793

Bi, Y., Srinivasan, D., Lu, X., Sun, Z., Zeng, W., 2014. Type-2 fuzzy multi-794

intersection traffic signal control with differential evolution optimization.795

Expert Systems with Applications 41, 7338–7349.796

Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V., 2006. Self-797

adapting control parameters in differential evolution: A comparative study798

on numerical benchmark problems. IEEE Transactions on Evolutionary799

Computation 10, 646–657.800

Corus, D., Oliveto, P.S., Yazdani, D., 2018. Artificial immune systems can801

find arbitrarily good approximations for the np-hard partition problem, in:802

Proc. of 15th Int. Conf. on Parallel Problem Solving from Nature – PPSN803

XV, pp. 16–28.804

Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., 2010. A novel multi-threshold805

segmentation approach based on differential evolution optimization. Ex-806

pert Systems with Applications 37, 5265–5271.807

Faria, A.F., de Souza, S.R., de Sá, E.M., 2021. A mixed-integer linear pro-808

gramming model to solve the multidimensional multi-way number parti-809

tioning problem. Computers & Operations Research 127, 105133.810

Hacibeyoglu, M., Alaykiran, K., Acilar, A.M., Tongur, V., Ulker, E., 2018.811

A comparative analysis of metaheuristic approaches for multidimensional812

two-way number partitioning problem. Arabian Journal for Science and813

Engineering 43, 7499–7520.814

Hacibeyoglu, M., Tongur, V., Alaykiran, K., 2014. Solving the bi-dimensional815

two-way number partitioning problem with heuristic algorithms, in: 2014816

IEEE 8th International Conference on Application of Information and817

Communication Technologies (AICT), IEEE. pp. 1–5.818

Hollander, M., Wolfe, D.A., Chicken, E., 2013. Nonparametric statistical819

methods. volume 751. John Wiley & Sons.820

32

Iacca, G., dos Santos Junior, V.C., de Melo, V.V., 2020. An improved jaya821

optimization algorithm with lévy flight. Expert Systems with Applications822

165, 113902.823

Karmarker, N., Karp, R.M., 1983. The Differencing Method of Set Parti-824

tioning. Technical Report. USA.825

Karp, R.M., 1972. Reducibility among combinatorial problems, in: Com-826

plexity of computer computations. Springer, pp. 85–103.827

Kojić, J., 2010. Integer linear programming model for multidimensional two-828

way number partitioning problem. Computers & Mathematics with Ap-829

plications 60, 2302–2308.830

Kratica, J., Kojić, J., Savić, A., 2014. Two metaheuristic approaches for solv-831

ing multidimensional two-way number partitioning problem. Computers832

& Operations Research 46, 59–68.833

Mertens, S., 2006. The easiest hard problem: Number partitioning. Compu-834

tational Complexity and Statistical Physics 125, 125–139.835

Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computers836

& Operations Research 24, 1097–1100.837

Moscato, P., Cotta, C., 2003. A gentle introduction to memetic algorithms,838

in: Handbook of metaheuristics. Springer, pp. 105–144.839

Moscato, P., Cotta, C., 2019. An accelerated introduction to memetic algo-840

rithms, in: Handbook of metaheuristics. Springer, pp. 275–309.841

Moscato, P., Cotta, C., Mendes, A., 2004. Memetic algorithms, in: New842

optimization techniques in engineering. Springer, pp. 53–85.843

Pavai, G., Geetha, T.V., 2016. A survey on crossover operators. ACM844

Computing Surveys 49, 1–43.845

Penas, D., Banga, J., González, P., Doallo, R., 2015. Enhanced parallel differ-846

ential evolution algorithm for problems in computational systems biology.847

Applied Soft Computing 33, 86–99.848

33

Piotrowski, A.P., 2013. Adaptive memetic differential evolution with global849

and local neighborhood-based mutation operators. Information Sciences850

241, 164–194.851

Pop, P.C., Matei, O., 2013a. A genetic algorithm approach for the multidi-852

mensional two-way number partitioning problem, in: Proc. of International853

Conference on Learning and Intelligent Optimization, Springer. pp. 81–86.854

Pop, P.C., Matei, O., 2013b. A memetic algorithm approach for solving855

the multidimensional multi-way number partitioning problem. Applied856

Mathematical Modelling 37, 9191–9202.857

Price, K., Storn, R.M., Lampinen, J.A., 2006. Differential evolution: a prac-858

tical approach to global optimization. Springer Science & Business Media.859

Rodriguez, F.J., Glover, F., Garćıa-Mart́ınez, C., Mart́ı, R., Lozano, M.,860

2017. Grasp with exterior path-relinking and restricted local search for861

the multidimensional two-way number partitioning problem. Computers862

& Operations Research 78, 243–254.863

Santucci, V., Baioletti, M., Di Bari, G., Milani, A., 2019. A binary alge-864

braic differential evolution for the multidimensional two-way number par-865

titioning problem, in: Proc. of the 19th European Conf. on Evolutionary866

Computation in Combinatorial Optimization – EvoCOP 2019, Springer867

International Publishing, Cham. pp. 17–32.868

Santucci, V., Baioletti, M., Milani, A., 2016. Algebraic differential evolu-869

tion algorithm for the permutation flowshop scheduling problem with total870

flowtime criterion. IEEE Transactions on Evolutionary Computation 20,871

682–694.872

Santucci, V., Baioletti, M., Milani, A., 2020. An algebraic framework for873

swarm and evolutionary algorithms in combinatorial optimization. Swarm874

and Evolutionary Computation 55, 100673.875

Storn, R., Price, K., 1997. Differential evolution – a simple and efficient876

heuristic for global optimization over continuous spaces. Journal of Global877

Optimization 11, 341–359.878

34

Tanabe, R., Fukunaga, A., 2013. Success-history based parameter adaptation879

for differential evolution, in: Proc. of 2013 IEEE Congress on Evolutionary880

Computation – CEC 2013, IEEE. pp. 71–78.881

Terpilowski, M.A., 2019. scikit-posthocs: Pairwise multiple comparison tests882

in python. Journal of Open Source Software 4, 1169.883

Tomassini, M., 2016. Lévy flights in neutral fitness landscapes. Physica A:884

Statistical Mechanics and its Applications 448, 163–171.885

Tsafarakis, S., Zervoudakis, K., Andronikidis, A., Altsitsiadis, E., 2020.886

Fuzzy self-tuning differential evolution for optimal product line design.887

European Journal of Operational Research 287, 1161–1169.888

Viswanathan, G.M., Buldyrev, S.V., Havlin, S., Da Luz, M., Raposo, E.,889

Stanley, H.E., 1999. Optimizing the success of random searches. Nature890

401, 911–914.891

Wang, L., Zeng, Y., Chen, T., 2015. Back propagation neural network with892

adaptive differential evolution algorithm for time series forecasting. Expert893

Systems with Applications 42, 855–863.894

Zamuda, A., Sosa, J.D.H., 2019. Success history applied to expert system895

for underwater glider path planning using differential evolution. Expert896

Systems with Applications 119, 155–170.897

35

