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ABSTRACT
In this paper, we introduce SMorph, a new methodology for combi-
natorial optimization that works in the instance space of the prob-
lem at hand. Indeed, given the problem instance to solve, SMorph
builds a simplified instance whose optimum is easy to locate, then
it iteratively evolves this instance towards the target one by al-
ternating two steps: optimization and smooth transformation of
the current instance. The knowledge acquired in each iteration
is transferred to next one, while the entire process is designed
with the aim of improving the last optimization step. Although the
abstract search scheme of SMorph is general enough to be instan-
tiated for a variety of combinatorial optimization problems, here
we present an implementation for the well-known Linear Ordering
Problem (LOP). Experiments have been conducted on a set of com-
monly adopted benchmark instances of the LOP, and the results
validate the proposed approach.

KEYWORDS
Combinatorial Optimization, Instance Space, Iterative Smooth Mor-
phing Transformation
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1 INTRODUCTION
Combinatorial Optimization Problems (COPs) are a class of chal-
lenging computational problems that involve finding the best possi-
ble solution among a vast number of feasible solutions. COPs arise
in various real-world scenarios, such as resource allocation [15],
scheduling [8], routing [10], and network design [7]. The quest
to efficiently solve these problems has led to the development of
powerful algorithms and a variety of theoretical results [22].

However, the vast majority of the COPs of practical interest
are NP-hard, so heuristic and metaheuristic approaches have been
increasingly proposed in order to overcome the theoretical limita-
tions in finding the optimal solution [6, 18]. These heuristic and
∗The authors contributed equally to this research.
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metaheuristic approaches, while not guaranteeing optimality, ex-
cel in finding good enough solutions within a reasonable time
frame, making them indispensable tools for addressing complex
COPs in practical applications. Among them, the most popular
and prominent examples are: algorithms based on local search tech-
niques (such as [16] and [12]), evolutionary algorithms (such as [20]
and [23]), swarm intelligence algorithms (such as [9] and [24]), and
model-based gradient search schemes (such as [5] and [21]).

Here, we propose a general heuristic method, called SMorph,
for tackling COPs. Given a COP and an instance to solve, SMorph
builds a succession of instances such that: the first one is easy to
solve to optimality, the last one is the target instance, and the 𝑖-th
instance is somehow contained in the (𝑖 + 1)-th instance of the
succession. Then, a metaheuristic algorithm, such that the output
of one execution can be fed as input to another execution, is used
to iteratively solve all the instances in the succession.

In order to get advantage from this process, we need to impose
two conditions: (i) the succession of intermediate instances has
to be generated in such a way that the transition from the initial
instance to the target instance is smooth enough in terms of mor-
phological transformations of the fitness landscape navigated by
the optimization algorithm, and (ii) the information transferred by
the metaheuristic algorithm from one execution to the next should
be meaningful for the whole optimization procedure.

Though being a general and abstract scheme which can be used
to handle a variety of COPs, to illustrate the main concepts, we pro-
vide a concrete implementation of SMorph for the Linear Ordering
Problem (LOP) [4, 26]. Moreover, We are also paving the way for a
variety of different research avenues, of which this paper should be
seen as a preliminary work. In fact, it is important to clearly state
from the beginning that our goal here is not at all that of beating
specialized algorithms for the LOP problem or any other problem.
Since our approach is general, and although it does offer decent per-
formances, it cannot compete with the best algorithms. However, it
is in our view a useful algorithm for understanding the relationships
between problem instances and their fitness landscapes.

To the best of our knowledge, SMorph is a novel approach for
combinatorial optimization, but there are some previous works that
can be seen as being correlated to some extent to the ideas herein.
In particular, it is conceptually partly inspired by the Adiabatic
Quantum Computing (AQC) [1] approach in which an initial spin-
glass Hamiltonian in its known ground state is slowly evolved into
a final Hamiltonian whose ground state contains the solution to
the problem.

There are also some commonalities with dynamic programming
and divide-et-impera approaches to optimization, which break
down the original problem into smaller and simpler sub-problems.
Some similarities can also be found with the CMSA approach [3]

1

https://orcid.org/0000-0003-1483-7998
https://orcid.org/0000-0001-5630-7173
https://orcid.org/0000-0002-9571-0683
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Santucci et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

which iteratively solves a series of sub-instances obtained from the
tackled problem instance.

The rest of the paper is organized as follows. An abstract and
general scheme of SMorph is introduced in Sect. 2. Sect. 3 describes
the LOP, while Sect. 4 introduces a concrete implementation of
SMorph for the LOP. Experiments on commonly adopted bench-
mark instances for the LOP are described and discussed in Sect. 5,
while conclusion and future lines of research are depicted in Sect. 6.

2 ABSTRACT SCHEME OF SMORPH
In this section we introduce the general scheme of SMorph that, in
principle, can be defined and implemented for any COP.

First of all, we denote a COP as a triple (I, S, 𝑓 ) where: I is the
set of the instances, S is the set of feasible solutions (or solution
space), and 𝑓 : S × I→ R is the objective function to optimize. As
an example, in the well-known Traveling Salesman Problem (TSP):
instances are distance matrices among a set of cities, solutions are
tours among all the cities, while the objective function is the sum
of the distances between adjacent cities in a tour.

Moreover, we are interested in trajectory-based iterative opti-
mization methods, i.e., those algorithms of the form A : I × S→ S
that, by taking as inputs both a problem instance 𝐼 ∈ I and a
seed solution 𝑥0 ∈ S, return a solution 𝑥∗ ∈ S whose objective
value 𝑓 (𝑥∗; 𝐼 ) is hopefully optimal or, anyway, good enough. Typ-
ical examples of such a kind of algorithms are the Iterated Local
Search [16] and the Tabu Search [12].

Given a COP (I, S, 𝑓 ) and a particular target instance 𝐼 ∈ I, the
SMorph method is a meta-scheme that uses a trajectory-based
iterative optimization algorithm A to find the solution 𝑥∗ ∈ S
whose objective value 𝑓 (𝑥∗; 𝐼 ) is hopefully optimal. The pseudocode
of SMorph is depicted in Alg. 1.

Algorithm 1 Abstract scheme of SMorph
1: 𝐼0 ← P(𝐼 ) ⊲ Generate an easy to solve initial instance
2: 𝑥0 ← optimal or good enough solution of 𝐼0
3: 𝑘 ← 0
4: while 𝐼𝑘 ≠ 𝐼 do ⊲ Loop until the current instance is the target one
5: 𝑘 ← 𝑘 + 1
6: 𝐼𝑘 ← T(𝐼𝑘−1, 𝑥𝑘−1, 𝐼 ) ⊲ Transform the current instance into a new one
7: 𝑥𝑘 ← A(𝐼𝑘 , 𝑥𝑘−1 ) ⊲ Optimize the new instance
8: end while
9: return 𝑥𝑘 ⊲ Return the solution found for the target instance

By observing Alg. 1, it is possible to identify two crucial com-
ponents of SMorph: the preparation function P and the transfor-
mation function T . The function P generates an initial instance 𝐼0
by simplifying the target instance 𝐼 (line 1) in a way that makes
computationally easy to obtain its optimal solution (line 2). Then,
the iterative loop in lines 4–8 transforms the current instance 𝐼𝑘
gradually bringing it closer to the target instance 𝐼 (line 6) and,
before advancing to the next iteration, it optimizes the updated
instance by executing the algorithm A seeded with the optimal
solution from the previous iteration (line 7). The loop terminates as
soon as the current instance matches the target one (line 4). This
means that the last execution ofA was run on the target instance 𝐼 .
Therefore, the last obtained solution is returned in line 9. Depend-
ing on how A, P and T are implemented, the returned solution
may not necessarily be optimal, but hopefully sufficiently good, for
the target instance 𝐼 .

The rationale of SMorph is to alternate between a morphological
transformation of the search landscape and the execution of an op-
timization algorithm. Intuitively, the morphological transformation
should be guided towards the target landscape and be sufficiently
smooth to ensure that the solution found in iteration 𝑘 − 1 serves as
a good starting point for the optimization step in iteration 𝑘 . Under
these hypotheses, if an optimal solution for the initial instance is
known, the whole process should converge towards a good solution
for the target instance.

Below, we formalize the properties that P and T must satisfy in
order to ensure the correctness of the SMorph scheme. Then, the
section is closed by some final observations.

2.1 Preparation function
The preparation function has the form P : I→ I and its purpose is
to simplify the given target instance 𝐼 into an instance 𝐼0 = P(𝐼 )
that is easier to solve. While it is possible to first build 𝐼0 and
then obtain its optimum (or a good enough solution) by using any
optimization algorithm, the opposite process can be more efficient
and more effective. Indeed, often it is possible to proceed by first
choosing an arbitrary solution 𝑥0 ∈ S, then construct an instance
𝐼0 related to 𝐼 and such that 𝑥0 is (provably) its global optimum.

As an example, consider a MAX-TSP1 instance represented by a
distance matrix 𝐷 . After choosing a tour 𝑥0 arbitrarily, it is straight-
forward to create a new distance matrix𝐷0 that maintains the same
values as in 𝐷 for the entries corresponding to adjacent cities in 𝑥0,
while all the other entries are set to zero. By design, 𝑥0 is a global
optimum of the MAX-TSP instance 𝐷0. Indeed, the objective value
of 𝑥0 is equivalent to the sum of all the distances in 𝐷0, a clear
upper bound for the optimal value of this MAX-TSP instance.

2.2 Transformation function
The purpose of the transformation function T is to generate a new
instance 𝐼𝑘 = T (𝐼𝑘−1, 𝑥𝑘−1, 𝐼 ) by taking as inputs: the previous
instance 𝐼𝑘−1, its solution 𝑥𝑘−1, and the target instance 𝐼 .

We require that: (i) 𝐼𝑘 should be closer than 𝐼𝑘−1 to 𝐼 ; (ii) 𝐼𝑘 should
be chosen as the smoothest instance, within a region of the space
surrounding 𝑥𝑘−1, among all the candidate instances.

The first property can be formalized by relying on a distance
function 𝑑 associated to the instance space I. Usually, there exist
natural choices for such a distance. As an example, MAX-TSP in-
stances are matrices, thus any distance induced by a matrix p-norm
can be considered for the case.

Given 𝐼 , 𝐼𝑘−1, and 𝐼𝑘 = T (𝐼𝑘−1, 𝑥𝑘−1, 𝐼 ), on the basis of the
chosen distance 𝑑 , we require that

𝑑 (𝐼𝑘 , 𝐼 ) = 𝑑 (𝐼𝑘−1, 𝐼 ) − 𝛿𝑘 , with 𝛿𝑘 > 0. (1)

Moreover, by also indicating with 𝐼𝑁 the last instance produced in
the transformation loop, it is required that 𝑑 (𝐼𝑁 , 𝐼 ) = 0. In other
terms, by denoting with 𝑑𝑘 = 𝑑 (𝐼𝑘 , 𝐼 ), the requirement is that
𝑑0, 𝑑1, . . . , 𝑑𝑁 is a decreasing succession of numbers, with 𝑑𝑁 = 0.
The step-length 𝛿𝑘 needs to be chosen in the design of T . A simple

1MAX-TSP is the maximization variant of the TSP (which is a minimization problem).
In this example we use MAX-TSP in place of the more common TSP just to simplify
the mathematical notation. Indeed, the same findings can be adapted to the TSP as
well.
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choice is to first decide the total number of iterations 𝑁 , then set
𝛿𝑘 = 𝑑 (𝐼0, 𝐼 )/𝑁 , for 𝑘 = 1, . . . , 𝑁 .

The second property is related to the smoothness of the new in-
stance, calculated on a region of the space surrounding the solution
found in the previous iteration of SMorph. In order to formalize
this property we can consider a smoothness function 𝑠 : I × S→ R
that, by taking as inputs a candidate instance 𝐽 ∈ I and a solution
𝑥 ∈ S, returns a number 𝑠 (𝐽 , 𝑥) that measures how smooth 𝐽 is in
the vicinity of 𝑥 . A possible choice for 𝑠 is to consider the random
walk correlation function defined as in [28], but having the foresight
to start the random walks from 𝑥 . This example is probably not
efficient enough for practical scenarios, so a problem-dependent
smoothness function may be more appropriate. Moreover, it is
important to note that, for 𝑠 to be well-defined, a neighborhood
relation on the solution space S is necessary. However, this is quite
natural for many COPs. For instance, in the MAX-TSP, the well-
known 2-OPT neighborhood [13] can be considered for the case.

Therefore, given 𝐼 , 𝐼𝑘−1, and 𝐼𝑘 = T (𝐼𝑘−1, 𝑥𝑘−1, 𝐼 ), on the basis
of the chosen smoothness function 𝑠 , we require that

𝐼𝑘 = argmax
𝐽 ∈J

𝑠 (𝐽 , 𝑥𝑘−1), (2)

where J = {𝐽 ∈ I : 𝑑 (𝐽 , 𝐼 ) = 𝑑 (𝐼𝑘−1, 𝐼 ) − 𝛿𝑘 }, i.e., it is the subset of
instances satisfying the distance property given in Eq. (1).

In summary, the definition of a concrete transformation func-
tion requires the specification of a distance function for the in-
stance space, a step-length, and a smoothness function. The dis-
tance function and the step-length are used to identify a candidate
set of instances, while the smoothness function allows to select the
smoothest instance among the candidates.

2.3 Observations
The effectiveness (i.e., the quality of returned solution) and the effi-
ciency (i.e., the computational effort required) of SMorph depends
on how P and T are designed.

For the preparation function, it is evident that the closer is the ini-
tial instance to the target one, the better it is, but more challenging
will be to obtain its global optimum. However, it is worthwhile to
note that, in the cases where the initial instance can be derived after
arbitrarily choosing its true global optimum (as in the MAX-TSP
example provided before), it is always preferable to choose a so-
lution which is as close as possible to the global optimum of the
target instance. For instance, in the MAX-TSP example, it is easy
to see that an initial instance is closer to the target one, in terms
of Euclidean distance, when the solution used to generate such
instance has a larger objective value. Therefore, one possibility
is to generate the initial solution – then, the initial instance – by
executing a constructive heuristic on the target instance.

Regarding the transformation function, its design impacts both
the efficiency and effectiveness of SMorph. The larger are the step-
lengths (i.e., the 𝛿𝑘 values), the fewer iterations in the main loop
of Alg. 1 may be required. On the other hand, smaller step-lengths
are likely to produce smoother instances in the candidate set of
Eq. (2), thus resulting in smoother morphological transformations
of the instances. Clearly, a smooth transformation helps the next
optimization step because: the smoother is the transformation, the
more likely it is that the optimum of the new instance is close to

the optimum of the previous instance, i.e., the starting point for
the optimization step. In summary, larger step-lengths improve
the efficiency of SMorph but penalize its effectiveness, and vice
versa. Therefore, a trade-off between effectiveness and efficiency is
required in practical scenarios.

Furthermore, let also note that the smoothness function used
by the transformation procedure may be computationally expen-
sive to calculate and maximize. Practically, computationally cheap
heuristic procedures for the smoothness may be preferred. We will
follow this line later on in the paper when presenting a concrete
implementation of SMorph for the LOP.

3 THE LINEAR ORDERING PROBLEM
Consider a (𝑛 × 𝑛)-matrix 𝐻 = [ℎ𝑖 𝑗 ]𝑛×𝑛 , where 𝑛 ≥ 2. The goal of
the LOP is to simultaneously reorder the rows and columns of 𝐻
in such a way that its upper-triangular sum is maximized. To be
more precise, the LOP seeks to find, among the set S𝑛 of all the
permutations of {1, 2, . . . , 𝑛}, the optimal permutation 𝜎∗ ∈ S𝑛 that
maximizes the objective function 𝑓 (𝜎 ;𝐻 ), defined as:

𝑓 (𝜎 ;𝐻 ) =
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

ℎ𝜎 (𝑖 ),𝜎 ( 𝑗 ) . (3)

Any LOP instance 𝐻 can be normalized by replacing each entry
ℎ𝑖 𝑗 with the value ℎ𝑖 𝑗 −min{ℎ𝑖 𝑗 , ℎ 𝑗𝑖 }. This normalization ensures
that all entries of 𝐻 become non-negative and it does not change
the order induced by Eq. (3) among the permutations in S𝑛 . For the
remainder of this paper we will assume that all LOP instances are
normalized, a practice consistent with commonly adopted bench-
mark suites [18].

In graph theory, if we regard 𝐻 as the weight matrix of an arc-
weighted digraph 𝐺 , then the LOP is equivalent to determining
the maximum-weight tournament graph contained within𝐺 . The
LOP has been considered in [27] and [14] for natural language
processing tasks, while a recent application in the field of machine
learning has been proposed in [19]. Further applications in social
choice theory, economics, anthropology, and sports are described
in [18].

The LOP has been proven to be NP-hard in the seminal work of
Garey and Johnson [11]. Since then, manymetaheuristic approaches
have been proposed. According to [18], the most successful ones
are those based on local search procedures adopting the insertion
neighborhood. In this context, two permutations 𝜎 and 𝜋 are con-
sidered neighbors if and only if 𝜋 can be obtained by shifting an
item from a position 𝑖 to another position 𝑗 in 𝜎 , and vice versa.
Moreover, in [26] it is shown that, given the objective value of 𝜎 ,
it is possible to compute the objective values of all the (𝑛 − 1)2
neighbors of 𝜎 with Θ(𝑛2) time steps.

To the best of our knowledge, the state-of-the-art metaheuristics
for the LOP are: the Iterated Local Search (ILS) methods proposed
in [26] and [4], the memetic algorithm introduced in [17], the very
recent CL-TLBO method proposed in [2], and the CD-RVNS algo-
rithm presented in [25]. The latter work also introduced a novel
constructive heuristic, namely C-LOP, and experimentally shown
its superiority over the previously considered best constructive
methods for the LOP.

3
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4 SMORPH FOR THE LINEAR ORDERING
PROBLEM

By taking into account the general and abstract scheme of SMorph,
as introduced in Sect. 2, here we describe a concrete implementation
for the LOP.

SMorph for the LOP works as depicted in Alg. 1 by considering
that: the instance space is the set of 𝑛 × 𝑛 matrices, the solution
space is the set of 𝑛-length permutations S𝑛 , while the objective
function is as in Eq. (3).

A concrete implementation of SMorph requires to design the
three algorithmic components A (i.e., the iterative optimization
algorithm), P (i.e., the preparation function) and T (i.e., the trans-
formation function) for the problem at hand. Their implementations
for the LOP are described here below.

4.1 Optimization algorithm
For A, we consider the ILS algorithm based on the insertion neigh-
borhood, that, as described in Sect. 3, is one of the most effective
metaheuristic for the LOP.

The ILS used in this study works as follows. It takes a seed
solution as input, runs a local search to find the corresponding local
optimum, and then iteratively applies three steps: (i) perturbation
of the current local optimum, (ii) local search starting from the
perturbed solution, (iii) replacement of the current local optimum
with the new one if it is better.

The perturbation phase applies 7 random interchanges between
pairs of permutation items (a value that has been experimentally
calibrated in [26] on a set of commonly adopted benchmark in-
stances), while the local search uses the insertion neighborhood
and the best improvement strategy, i.e., each neighborhood scan
yields the best neighboring solution in terms of objective value.

The number of iterations 𝑛it is left as a parameter of the ILS,
which, after 𝑛it iterations returns the last and best local optimum
encountered.

4.2 Preparation function
For the LOP, we devise a preparation function P which is very
similar to the one described in the example provided in Sect. 2.
P takes as inputs both the target instance 𝐻 = [ℎ𝑖 𝑗 ]𝑛×𝑛 and

a seed solution 𝜎 ∈ S𝑛 , then it returns a simplified instance 𝐴 =

[𝑎𝑖 𝑗 ]𝑛×𝑛 , which is constructed as follows:

𝑎𝜎 (𝑖 ),𝜎 ( 𝑗 ) =

{
ℎ𝜎 (𝑖 ),𝜎 ( 𝑗 ) if 𝑖 < 𝑗,

0 otherwise.
(4)

It is easy to see that, when the rows and columns of 𝐴 are per-
muted by 𝜎 , all the positive entries appear in the upper triangular
part of the permuted matrix. This implies that 𝑓 (𝜎 ;𝐴) is equal to
the sum of all the entries of 𝐴, i.e., a clear upper bound for the LOP.
Therefore, the permutation 𝜎 is, by construction, a global optimum
for the instance 𝐴.

We also devise two strategies for choosing the seed solution 𝜎 :
SMorph-R and SMorph-H, which select 𝜎 , respectively, at random
and by applying the constructive heuristic C-LOP (see Sect. 3) to
the target instance 𝐻 . Consequently, the computational cost for
generating the initial instance and its global optimum is: Θ(𝑛2) for

SMorph-R, evident from Eq. (4), and Θ(𝑛2 log𝑛) for SMorph-H, de-
termined by the average computational cost of running C-LOP [25].

4.3 Transformation function
To describe the transformation functionT implemented for the LOP,
for the sake of presentation, we will use the following notation:
𝐴 = [𝑎𝑖 𝑗 ]𝑛×𝑛 represents the previous instance in input, whose
solution 𝜎 ∈ S𝑛 is given by the previous iteration of SMorph,
𝐻 = [ℎ𝑖 𝑗 ]𝑛×𝑛 denotes the target instance, while 𝐵 = [𝑏𝑖 𝑗 ]𝑛×𝑛 will
be the returned instance as computed by T , i.e., 𝐵 = T (𝐴, 𝜎, 𝐻 ).

According to Sect. 2, it is useful to identify: a suitable distance
function 𝑑 , a step-length 𝛿 , and an appropriate smoothness func-
tion 𝑠 .

In this preliminary study, we choose the Hamming distance
between matrices as 𝑑 . Thus, for two (𝑛 × 𝑛)-matrices 𝐴 and 𝐵,
𝑑 (𝐴, 𝐵) counts the number of different entries between𝐴 and 𝐵. We
also choose a constant step-length 𝛿 = 1. Therefore, the candidate
instances to consider inT are all the instances that can be generated
by moving an entry from the target instance 𝐻 into instance 𝐴,
provided that this entry has not already been moved in the previous
iterations of SMorph.

We use the notation 𝐶 (𝑖 𝑗 ) =
[
𝑐 (𝑖 𝑗 )𝑘𝑙

]
𝑛×𝑛 to represent the candi-

date instance obtained by moving the generic entry (𝑖, 𝑗). 𝐶 (𝑖 𝑗 ) is
defined as:

𝑐 (𝑖 𝑗 )𝑘𝑙 =

{
𝑎𝑘𝑙 if 𝑘 ≠ 𝑖 and 𝑙 ≠ 𝑗,

ℎ𝑖 𝑗 otherwise.
(5)

Therefore, C =

{
𝐶 (𝑖 𝑗 ) : 𝑎𝑖 𝑗 ≠ ℎ𝑖 𝑗 and 𝑖, 𝑗 = 1, . . . , 𝑛

}
is the set of

candidates, which contains 𝑂 (𝑛2) instances.
Within C, T has to select the smoothest instance. With this

regard, we have designed an efficient smoothness function 𝑠 that,
given an instance 𝐶 (𝑖 𝑗 ) ∈ C, is defined as follows:

𝑠

(
𝐶 (𝑖 𝑗 ) , 𝜎

)
= −

����𝑓 (
𝜎 ;𝐶 (𝑖 𝑗 )

)
− 𝑓

(
𝜎 (𝑖 𝑗 ) ;𝐶 (𝑖 𝑗 )

)����
−
����𝑓 (

𝜎 ;𝐶 (𝑖 𝑗 )
)
− 𝑓

(
𝜎 ( 𝑗𝑖 ) ;𝐶 (𝑖 𝑗 )

)����, (6)

where: 𝜎 (𝑖 𝑗 ) is the permutation obtained by shifting the item at
position 𝑖 to position 𝑗 in 𝜎 , while 𝜎 ( 𝑗𝑖 ) is the permutation obtained
by shifting the item at position 𝑗 to position 𝑖 in 𝜎 .

The two absolute differences in the right hand side of Eq. (6)
represent the magnitudes of the changes in objective function value
when the insertion moves 𝑖 → 𝑗 and 𝑗 → 𝑖 are applied to the
solution 𝜎 . The rationale behind this choice is that the smaller
are the changes in objective values between 𝜎 and its neighbors,
the smoother is the instance in the neighborhood of 𝜎 , which, we
recall, will be the starting point for the next application ofA. Note
also that the two minus signs in front of the absolute values are
there because the smoothest candidate instance is the one that
maximizes 𝑠 .

For the sake of efficiency, Eq. (6) considers only two neighbors
of 𝜎 . This limitation is not overly restrictive because, as shown in
the analysis of the insertion neighborhood presented in [4], there
can be at most 2𝑛 neighbors of 𝜎 whose objective values change
when the underlying instance is changed in only one entry (𝑖, 𝑗).
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Moreover, 𝜎 (𝑖 𝑗 ) and 𝜎 ( 𝑗𝑖 ) are the two neighbors most directly af-
fected by the change. Hence, having a constant number of neighbors
allows the incremental computation for the smoothness of all the
candidate instances in 𝑂 (𝑛2) time steps in total. The key is to use
the value 𝑓 (𝜎 ;𝐴), which has already been computed in the previ-
ous iteration of SMorph, and to scan the candidate instances by
following an appropriate order, similar to what is described in [26]
for accelerating local search methods.

In summary, the transformed instance 𝐵 = T (𝐴, 𝜎, 𝐻 ) is the
instance that, among all those sharing the same entries as 𝐴 except
for one taken from 𝐻 , maximizes the smoothness function defined
in Eq. (6), that is:

𝐵 = argmax
𝐶 (𝑖 𝑗 ) ∈C

𝑠

(
𝐶 (𝑖 𝑗 ) , 𝜎

)
. (7)

4.4 Observations and computational
improvement

Taking into account the algorithmic components A, P, and T
introduced in the previous subsections, the SMorph implementation
for the LOP can be outlined through the pseudocode presented in
Alg. 2, which closely follows the abstract scheme provided in Alg. 1,
with only few differences.

Algorithm 2 SMorph for the LOP
1: 𝐴,𝜎 ← P(𝐻 ) ⊲ P is defined in Sect. 4.2
2: 𝑁 ← 𝑑 (𝐴,𝐻 ) ⊲ 𝑑 is defined in Sect. 4.3
3: for 𝑘 ← 1 to 𝑁 do
4: 𝐵 ← T(𝐴,𝜎,𝐻 ) ⊲ T is defined in Sect. 4.3
5: if (𝑖, 𝑗 ) is the entry where 𝐵 differs from𝐴, and 𝜎−1 (𝑖 ) > 𝜎−1 ( 𝑗 ) then
6: 𝜎 ← A(𝐵, 𝜎 ) ⊲ A is defined in Sect. 4.1
7: end if
8: 𝐴← 𝐵

9: end for
10: return 𝜎

First of all, it is worth noting that there are two initialization
strategies to choose from in line 1, i.e., SMorph-R and SMorph-H,
as described in Sect. 4.2.

Furthermore, it is possible to pre-determine the number of it-
erations, which is equal to the Hamming distance between the
initial instance 𝐴 and the target instance 𝐻 (see line 2). Since we
are dealing with normalized LOP instances and considering that 𝐴
is initialized with at least 𝑛(𝑛 − 1)/2 entries from 𝐻 , we have that
SMorph requires 𝑂 (𝑛2) iterations.

As shown in line 5, we can save computational time by not always
executing the optimization algorithm A. Indeed, let assume that 𝜎
is the global optimum of the previous instance𝐴, and 𝐵 was selected
by T as the candidate𝐶 (𝑖 𝑗 ) , i.e., its values match those of 𝐴, except
for the entry (𝑖, 𝑗), taken from𝐻 . Then, when considering thematrix
𝐵 permuted by 𝜎 , we have that the new entry (𝑖, 𝑗) can go either in
the upper or lower triangular part of the permuted matrix. When
it goes in the upper triangular part, i.e., when 𝜎−1 (𝑖) < 𝜎−1 ( 𝑗), it
is easy to see that: (i) 𝑓 (𝜎 ;𝐵) = 𝑓 (𝜎 ;𝐴) + ℎ𝑖 𝑗 , and (ii) the objective
values of the neighbors of 𝜎 either remain unchanged or increase by
the same quantity ℎ𝑖 𝑗 . Consequently, 𝜎 is the global optimum also
for the new instance 𝐵, thus there is no need to run the optimization
algorithm on 𝐵. Even though we cannot guarantee that 𝜎 will
always be the global optimum for the current instance at every

SMorph iteration, we anyway apply this trick to save computational
time.

Finally, it is easy to see that, if the target instance in input is
in normal form, then the initial and all the intermediate instances
generated by SMorph are in normal form as well.

5 EXPERIMENTS
5.1 Experimental Setup
Computational experiments were conducted with a twofold pur-
pose: to validate the proposed approach, and to investigate its
effectiveness.

The experiments were carried out on 218 commonly adopted
benchmark instances, divided into the following sets: (i) the IO set,
which contains 50 real-world economic input-output tables, whose
size varies from 44 to 79, and whose optimal values are known;
(ii) the RandB set, consisting of 90 matrices randomly generated
in an asymmetric manner and such that their optimal values are
unknown; (iii) the xLOLIB set, which can be further divided into two
subsets, xLOLIB_150 and xLOLIB_250, each comprising 39 instances
of size, respectively, 150 and 250, with unknown optima. All the
benchmark suites are publicly available at https://grafo.etsii.urjc.
es/optsicom/lolib.html. As said in Sect. 1, because the goal is not to
be competitive with the best algorithm for the LOP, we use small
and medium-size instances which facilitates the experimentation
by cutting on computation time.

For the main goal, i.e., to validate the proposed approach, since
the SMorph for the LOP performs multiple executions of the ILS
on a succession of slightly different instances, we compared it
with a multi-start version of the ILS algorithm (MS-ILS), which
performs a series of independent ILS executions on the given target
instance. All the runs of the ILS, both in SMorph and MS-ILS, are
set to terminate after 𝑛it = 5 iterations have been performed (see
Sect. 4.1). Moreover, to ensure a fair comparison, both SMorph
and MS-ILS executions evaluate the same number of solutions.
Therefore, if SMorph outperforms MS-ILS, this will be an indication
that employing the SMorph gradual process to establish a good
starting point for optimizing the target instance is at least better
than repeatedly attempting different starting points at random.

For the sake of completeness, we also compared SMorph with
Long-ILS, i.e., the ILS algorithm set to run with the same budget
of evaluations observed in SMorph executions, without explicitly
limiting its number of iterations 𝑛it .

Practically, SMorph is first executed 15 times per instance and, for
each execution, we recorded the number of evaluations performed.
Then, also MS-ILS and Long-ILS are executed 15 times per instance
using, as total budget, the average number of evaluations observed
in SMorph executions.

Finally, taking into account the two initialization strategies de-
scribed in Sect. 4.2, we have devised two variants of SMorph, namely
SMorph-H and SMorph-R. Furthermore, we apply both heuristic
and random initialization also to Long-ILS and all the ILS exe-
cutions within MS-ILS. Consequently, we will use the acronyms
Long-ILS-H, Long-ILS-R, MS-ILS-H, and MS-ILS-R. In summary, we
have a total of six algorithms, each of them executed 15 times on
each of the 218 benchmark instances under consideration, resulting
in a total of 19 620 executions.
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5.2 Experimental Results
To facilitate a fair comparison and aggregation of results across
different instances, the final objective value 𝑣 produced by each ex-
ecution is converted into the relative percentage deviation measure,
defined as rpd = 100 · (best−𝑣)/best, where best represents the best
objective value observed among all executions of each algorithm
on the same instance.

Tab. 1 shows the average rpds for each algorithm, aggregated
across individual benchmark sets and across the entire benchmark
suite. These results can be commented as follows.

First and foremost, it is important to note that both SMorph
variants exhibit better overall rpds than the two MS-ILS variants.
This advantage of SMorph over MS-ILS is particularly evident on
the larger and more challenging instances, i.e., those in the two
xLOLIB sets. In contrast, MS-ILS appears to perform better on
the RandB instances, even slightly outperforming Long-ILS, while
the IO benchmark set does not clearly distinguish between the
competing algorithms.

Second, Long-ILS shows better rpds than SMorph, considering
both variants. However, it is interesting to note that, when moving
from xLOLIB_150 to xLOLIB_250, while Long-ILS degrades its rpds,
SMorph improves its performance.

To further explore these results, we present a boxplot graph in
Fig. 1, which illustrates the distribution of rpd values achieved by
the competing algorithms, aggregated for each benchmark set.

Fig. 1 clearly confirms the previous observations. Furthermore, it
allows to see that SMorph is able to achieve very good peak results,
comparable with those of Long-ILS. However, it also reveals that
SMorph lacks the robustness exhibited by the other competitors.

Lastly, we complete our analysis by presenting in Tab. 2 the win-
tie-loss comparisons involving both SMorph variants. For the sake
of presentation, we focus on the most challenging benchmark sets,
i.e., xLOLIB_150 and xLOLIB_250. The results of each comparison,
between two algorithms “𝐴1 vs 𝐴2”, are expressed as a triple𝑤 /𝑡/𝑙 ,
indicating that:𝐴1 outperformed𝐴2 in𝑤 instances,𝐴1 and𝐴2 have
the same performance in 𝑡 instances, and 𝐴1 was outperformed
by 𝐴2 in 𝑙 instances. Two types of comparisons are presented: MWU,
which employs the Mann Whitney U test (with a confidence level
of 0.05) to compare results from all executions of both algorithms
on a particular instance, and Best, which directly compares the
best objective values recorded by the algorithms in all executions
on a specific instance.

Tab. 2 consolidates the previous observations. In particular, it
shows that SMorph-H is consistently better than MS-ILS-H, both
in terms of average and best results. The same is true for SMorph-
R when compared to both MS-ILS-R and MS-ILS-H. Regarding
the comparison between SMorph variants and Long-ILS variants,
while the latter show better results overall, it is interesting to note
that SMorph-H achieved statistically indistinguishable performance
compared to Long-ILS-H in 17 out of 39 instances of the xLOLIB_250
set. Furthermore, in terms of peak performance, SMorph-H was
more effective than Long-ILS-H in 9 out of 39 instances of the
xLOLIB_250 set. Finally, regarding the SMorph-H vs SMorph-R
comparison, let observe that, though the heuristic initialization is

almost always preferable in terms of average performance, SMorph-
R was able to achieve better peak performance than SMorph-H in
35 out of 78 xLOLIB instances.

In conclusion, based on the results presented, we can confidently
assert that SMorph has indeed achieved greater effectiveness com-
pared to MS-ILS, thus meaning that the gradual process of SMorph,
which transitions an initial instance towards a target instance, al-
lows to produce a seed solution for the last ILS execution that is
consistently better than selecting it randomly or heuristically, even
after multiple repetitions. On the other hand, the effectiveness of
SMorph is not yet at the level of Long-ILS which is an important
part of the best algorithms for LOP.

6 CONCLUSION AND FUTUREWORK
We have introduced a novel approach, called SMorph, for under-
standing the structural changes that take place in the instance
space when the algorithm smoothly progresses towards the opti-
mum. This method draws partial inspiration from the Adiabatic
Quantum Computing approach, but unlike the latter, it is firmly
grounded in classical computing environments.

SMorph relies on three key components: an iterative optimiza-
tion algorithm, a preparation function, and a transformation func-
tion. The preparation function simplifies the given target instance,
making its solution easier to find. Subsequently, the instance un-
dergoes iterative refinement and is gradually transformed into the
target instance. During each iteration, the iterative optimization
algorithm is executed on the current instance, using the previous
solution as starting point. The rationale behind this approach is
that a smooth morphological transformation of a problem instance
should result in a new problem instance, whose solution is closely
related to the previous one. Therefore, SMorph seeks to apply this
principle by iteratively guiding the process from an easy initial
instance towards the given target instance.

In addition to presenting an abstract definition of SMorph, we
have also introduced a concrete implementation for the Linear Or-
dering Problem (LOP). Computational experiments were conducted
on a set of commonly used benchmark instances for the LOP. The
results clearly validate the proposed approach but indicate that
improvements are needed if SMorph is to be used as an efficient
optimization algorithm in the future.

The findings discussed in this paper offer opportunities for fur-
ther investigation from various perspectives.

One of the most interesting ideas for further study is to conduct
a series of fitness landscape analyses on the sequence of instances
generated by SMorph. This will enhance our comprehension of the
algorithm’s dynamics and provide valuable insights for its future
development.

Additionally, SMorph as an optimization algorithm can be ex-
tended in each one of its three key components along several direc-
tions, although we do not yet know if it will achieve performances
close to those of the best algorithms. Notably, the most promising
ones are: (i) exploring other distance measures for the instance
space, like e.g. the Euclidean or Manhattan distance; (ii) examining
different strategies for determining the step-length of transforma-
tions at each iteration, also to limit the total number of iterations
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Benchmark set SMorph-H SMorph-R MS-ILS-H MS-ILS-R Long-ILS-H Long-ILS-R

IO 0.01 0.01 0.00 0.00 0.00 0.00
RandB 0.11 0.13 0.02 0.01 0.02 0.03
xLOLIB_150 0.44 0.53 0.70 0.87 0.18 0.19
xLOLIB_250 0.39 0.52 0.88 1.09 0.24 0.25

Overall 0.20 0.25 0.29 0.35 0.08 0.09
Table 1: Average relative percentage deviations (rpds).
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Figure 1: Boxplot of the relative percentage deviations recorded in all the executions.

Type Algorithms xLOLIB_150 xLOLIB_250

MWU SMorph-H vs SMorph-R 13 / 25 / 1 22 / 15 / 2
SMorph-H vs MS-ILS-H 37 / 2 / 0 39 / 0 / 0
SMorph-H vs Long-ILS-H 0 / 5 / 34 0 / 17 / 22

SMorph-R vs MS-ILS-R 35 / 4 / 0 39 / 0 / 0
SMorph-R vs MS-ILS-H 23 / 13 / 3 37 / 1 / 1
SMorph-R vs Long-ILS-R 0 / 0 / 39 0 / 2 / 37

Best SMorph-H vs SMorph-R 16 / 0 / 23 27 / 0 / 12
SMorph-H vs MS-ILS-H 39 / 0 / 0 39 / 0 / 0
SMorph-H vs Long-ILS-H 3 / 0 / 36 9 / 0 / 30

SMorph-R vs MS-ILS-R 39 / 0 / 0 39 / 0 / 0
SMorph-R vs MS-ILS-H 39 / 0 / 0 39 / 0 / 0
SMorph-R vs Long-ILS-R 2 / 0 / 37 2 / 0 / 37

Table 2: Win-Tie-Loss comparisons of SMorph vs all the other algorithms.
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performed by SMorph; (iii) studying different methodologies for se-
lecting candidate instances and evaluating their smoothness within
the transformation function; (iv) using optimization algorithms
other than the ILS scheme, such as population-based algorithms.

Another avenue for extension is the application of SMorph to
other combinatorial optimization problems, encompassing various
types of search spaces, including binary string spaces. Moreover,
the methodology for generating the initial instance can be further
extended and investigated to produce benchmark instances with
known global optima, and, from a theoretical point-of-view, it is
worth investigating the pace of the entire iterative process to ensure
that the global optimum of the new instance lies within the neigh-
borhood, or in the same basin of attraction, of the global optimum
of the previous one.
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