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Abstract—In this work, the Linear Ordering Problem (LOP)
has been approached using a discrete algebraic-based Differential
Evolution for the Linear Ordering Problem (LOP). The search
space of LOP is composed by permutations of objects, thus it
is possible to use some group theoretical concepts and methods.
Indeed, the proposed algorithm is a combinatorial Differential
Evolution scheme designed by exploiting the group structure of
the LOP solutions in order to mimic the classical Differential
Evolution behavior observed in continuous spaces. In particular,
the proposed differential mutation operator allows to obtain both
scaled and extended differences among LOP solutions represented
by permutations. The performances have been evaluated over
widely known LOP benchmark suites and have been compared
to the state-of-the-art results.

Index Terms—Differential Evolution, Linear Ordering Prob-
lem, Combinatorial Optimization

I. INTRODUCTION

The Linear Ordering Problem (LOP) is a classical NP-Hard
combinatorial optimization problem [1], [2] that has received
considerable attention because of its many applications in
diverse research fields such as economy [3], graph theory [4],
archeology [5] and computational social choice [6].

LOP can be straightforwardly formulated as a matrix trian-
gulation problem [7]. Given a n X n matrix H, LOP requires to
find a permutation 7 of the row and column indices {1,...,n}
that maximizes the objective function
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Basically, the goal is to find a simultaneous permutation of the
rows and columns of H such that the sum of the super-diagonal
entries is maximized.

Since LOP is NP-Hard [8], exact methods are able to find
optimal solutions only in small problem instances. Anyway, the
permutation structure of the LOP solutions allows to apply a
variety of meta-heuristics and evolutionary algorithms specifi-
cally designed for permutation-based search spaces. Among
these, recently, the Differential Evolution for Permutations
(DEP) algorithm has been successfully proposed in [9] for the
Permutation Flowshop Scheduling Problem (PFSP).

DEP is a completely discrete variant of the popular nu-
merical Differential Evolution (DE) algorithm [10]. The core
component of numerical DE is its differential mutation oper-
ator that allows to self-adapt DE population to the objective

function landscape at hand by exploiting the differences among
the solutions in the population [11]. DEP mimics the same
behavior of classical DE in the combinatorial space of permu-
tations. Its key idea resides in the definition of the operations
of difference, sum, and truncation on the permutations space.
These operations are somehow consistent with their usual
definitions in the numerical space R™. This is made possible
by exploiting the algebraic structure of the permutations space
where its elements, i.e., the permutations, form a group in the
algebraic sense, namely, the symmetric group.

Since DEP has obtained state-of-the-art results on the PFSP
problem [9], and in order to investigate its applications to
other classes of permutation-based combinatorial optimization
problems, here we provide a DEP variant for LOP and we
analyze its performances on a large set of widely known
benchmark problem instances.

Furthermore, with respect to [9], the differential mutation
procedure has been expanded in order to produce not only only
truncated differences but also extended differences between
permutations.

The rest of the paper is organized as follows. In Section
II, we provide a review of the state-of-the-art LOP methods
found in literature. Section III describes the DEP algebraic-
based differential mutation operator by also introducing the
new procedure that allows to consider extended differences
between permutations. The full DEP scheme adapted for
LOP is described in Section IV. An experimental analysis
of the proposed approach is provided in Section V. Finally,
conclusions are drawn in Section VI where some future lines
of research are also depicted.

II. RELATED WORKS

Due to the NP-Hardness of LOP, as highlighted in [7], exact
methods are able to find optimal solutions only in easy problem
instances and dramatically deteriorate their execution time with
the increasing of the instance size.

To overcome these drawbacks, constructive heuristics have
been proposed with the aim of providing a good enough
solution in a reasonable amount of time. Among these there
are: the two methods proposed by Becker in [12], the heuristic
of Chenery and Watanabe [13], and the construction methods
based on insertion moves proposed in [2].

However, heuristic methods, although fast, are not effective
and do not find optimal solutions also on easy LOP instances.



For this reason they are often used to feed an initial solution
to a local search. In LOP, the most used solutions neighbor-
hoods adopted for the local search methods are the insertion,
interchange, and adjacent swap neighborhoods [1].

Local search algorithms are not able to escape from local
optima. GRASP [1] turns around this problem by repeatedly
restarting a local search every time a local optimum is found.
However, more effective solutions are obtained by the meta-
heuristic methods. These can be divided in two categories: the
ones based on a single incumbent solution, and the population
based meta-heuristics.

Among the single-solution methods for LOP there are the
CK method [14] and some implementations of popular meta-
heuristics like Tabu Search [15], Simulated Annealing [16],
Variable Neighborhood Search [17] and Iterated Local Search
(ILS) [7]. Population based meta-heuristics exploit a popula-
tion of solutions in order to direct the search for the optimum.
LOP methods falling in this category are implementations
of: Scatter Search (SS) [18], Genetic Algorithm (GA) [19],
and Memetic Algorithm (MA) [7]. Conversely from GA that
only employs genetic operators to evolve the population of
solutions, SS and MA can be thought as hybrid methods for
their extensive use of local search procedures.

According to [7] and the more recent [20], MA and ILS
are to be considered the state-of-the-art algorithms for LOP.

ILS [7], starting from a random solution, iteratively alter-
nates the two phases of local search and perturbation. The local
search procedure is based on the insertion neighborhood, while
the perturbation is performed by shaking the local optimum
with a given number of interchange moves. Moreover, a
new local optimum is accepted not only if it improves the
incumbent solution, but also if it shows a slight worsening.

MA [7] evolves a small population of distinct local optima
by applying a local search procedure to the offspring solutions
generated by a crossover operator. While the same local search
procedure of ILS is employed, in [7] four different crossover
operators have been experimented and the results show that
the best one is OBX (order based crossover) [21].

Further improvements to ILS and MA have been proposed
in [20] where a theoretical investigation of the LOP insertion
neighborhood shows that not all the solution neighbors have
to be evaluated in order to select the best one. This approach
has the cost of an expensive preliminary computation of the so
called “restriction matrix”. The resulting variants of ILS and
MA are referred, respectively, as ILSg and MAg.

Finally, some applications of the Differential Evolution
(DE) algorithm to LOP have been proposed in [22], [23], [24].
However, conversely from the approach followed in this work,
they adopt the classical DE and rely on the “random key”
transformation scheme to decode a numerical vector into a
permutation just before the fitness evaluation. This approach
brings to a distinction between the phenotypic and genotypic
spaces, thus introducing large plateaus in the numerical land-
scape. This is probably the reason of their poor performances.

III. DIFFERENTIAL MUTATION FOR PERMUTATIONS

Differential Evolution (DE) [10] is a popular and powerful
evolutionary algorithm over continuous search spaces using the
differential mutation operator as its key component [11]. In the
most common variant, for each population individual z; € R",
three different parents x,,, z,, , *,, (also different from z;) are
randomly selected from the current population and a mutant
v; € R™ is generated according to

Vi = Tpy + F - (T, — Tpy) (2)

where F' > 0 denotes the scale factor parameter. It has been
argued that the differential mutation confers to DE the “contour
matching” property (term coined by Price et al. in [11]), i.e., it
allows DE to automatically adapt both mutation step size and
orientation to the objective function landscape.

In this section we describe and extend the combinatorial
differential mutation scheme previously introduced in [9] for
the Permutation Flowshop Scheduling Problem (PFSP). In
PFSP, this operator allowed to obtain state-of-the-art results
but constrains F' to the interval [0, 1]. Here, we extend the
scheme to allow also F' > 1.

The permutations of the set {1,2,...,n}, together with
the usual permutations composition operator o, form a group
denoted by S(n) where each m € S(n) has its inverse, denoted
by m~!. Moreover, the identity permutation e, defined as
e(i) =i for each 1 < i <, is the identity element of S(n).

As introduced in [9], it is possible to consistently define the
sum and difference operators of two elements 71, m2 € S(n)
as:

T D 7o := 71 O T2 3)
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Now, in order to complete the definition of the mutation
operator as in equation (2), we have to introduce the concept
of multiplication of a permutation 7w by a real number F' to
obtain the “scaled” permutation F'® 7. Once this operation is
defined, we can rewrite the differential mutation of equation
(2) for the permutations space as:

yi:wTOO(FQ(ﬂrzloﬂn)) (@)

As discussed in [9], the multiplication of a permutation by a
positive real value can be defined by considering a generating
set of S(n), i.e., a set G C S(n) such that every element of
S(n) can be written as a compositions chain of some elements
of G.

Given a generating set G C S(n) and any m € S(n), let
{91,.-.,91) be a decomposition of =, i.e., T =gy 0--- 09y,
where g1,...,91, € G.Let k = [F- L], then the multiplication
of by 0 < F < 1is defined as FOm := gy 0---0 g.
While, for ' > 1 it is not possible to exceed the maxi-
mum length D of a decomposition in terms of G. Hence,
k=min{[F-L], D} and the decomposition of 7 is extended
by adding (91,41, ..,9gk) such that (g1, ...,90,9041s---,3k)
is a minimal decomposition of some permutation. Therefore,
FOm:i=g1 000, 0(L410-0Gs =mT0gL410 0 (k.



Interestingly, the generating set G allows a useful geometric
interpretation of the search space. Indeed, it is possible to
represent the permutations search space as a Cayley graph,
whose vertices are the permutations of S(n) and, for any
7w € S(n) and g € G, the vertices corresponding to 7 and wog
are joined by an arc labeled with g. Using the Cayley graph, it
is possible to: (i) define a distance between two permutations
71, m2 € S(n), corresponding to the length of a shortest path
from 7 to 7y, (ii) compute 7, © o as the compositions chain
of the arcs labels in a shortest path from 75 to 71, (iii) interpret
the scaled difference as a truncated or an extended shortest
path, respectively, for 0 < F' <1 or F' > 1.

Various generating sets for S(n) are possible. Following [9],
we have decided to work with the set of simple transpositions
ST = {(i,i+1)r 1 <i < n-—1}, where (i,i + 1)1
denotes the permutation which only swaps the two adjacent
elements at positions 4 and ¢ + 1. ST has n — 1 elements and
induces decompositions with maximum length of D = (72’)
(this is also the diameter of the corresponding Cayley graph).
By recalling that an inversion of a permutation 7 is a pair of
indices {7, ;j} such that i < j and 7 (i) > 7(j), the number
of inversions I(7) of any m € S(n) equals to the length of a
minimal decomposition of 7 in terms of ST. Moreover, ST
induces the Kendall-7 distance dx [25] which, if applied to
any 71, € S(n), is equal to I(my ! omy).

Now, in order to compute F' © 7, we need a procedure to
obtain a minimal decomposition of 7 in terms of the simple
transpositions. This can be done using the well known bubble
sort algorithm by recording the adjacent swaps (i.e., the simple
transpositions) performed during the sort. However, 7 has
several different shortest representations as compositions chain
of simple transpositions. Hence, in order to design a mutation
scheme as fair as possible, we defined a randomized version
of bubble sort, here outlined in Algorithm 1.

Algorithm 1 Randomized Bubble Sort

1: function RANDBS(7 € S(n))
CC«+ ()
LST + {i :

2

3 7[i] > [t + 1]}

4 while LST # () do

5: i < RemoveRandomElement(LST)

6: Swap 73] and 7[i 4 1]

7 Append (i,7+ 1)1 to CC

8 ifi>0andi—1¢ LST and w[i — 1] > 7[¢] then
9: Add i —1to LST
10: end if

11: ifi<n—1landi+1¢ LST and 7[i + 1] > w[i + 2] then
12: Add i+ 1to LST

13: end if

14: end while

15: return reverse(C'C)

16: end function

RandBS sorts the permutation 7 towards the identity
permutation e with the optimal number of adjacent swaps.
Indeed, LST is initialized with the adjacent inversions of 7 and
at each iteration of the while loop: (i) a simple transposition
is chosen from LST and is applied to 7, thus reducing by
one the number of inversion of 7; (ii) the applied simple
transposition is stored in C'C; (iii) LST is updated with the
new adjacent inversion(s) in the current 7. The search space

diameter bounds the number of iterations to (3) = O(n?),
then the time complexity of RandBS is O(n?) as the classical
Bubble-sort algorithm. Furthermore, by reversing the list CC
at the end of its computation, RandB)S produces as a list one
the minimal-length random decompositions of 7 in terms of
simple transpositions.

It is now possible to define the procedures to compute F'O7
for both the cases 0 < ' <1 and F' > 1. These are described

in the following subsections.

A Case 0 < F <1

For the case 0 < F' < 1, we have to compute a random
decomposition of the difference permutation, truncate and then
evaluate it. More formally, the differential mutation of equation
(5) can be computed, when F' € [0,1], with the following
steps:

1) compute the difference § = 7, © mp, = m,,! 0 7y

2) perform RandBS(d) in order to obtain a random de-

composition ((i1,i1 + 1)71,...,(ir,ir + 1)) of § in
terms of simple transpositions;

3) compute the scaled difference 6* = F © § = (i1,41 +

1)po---o(ig,ix + 1)r where k = [F - L];
4) obtain the mutant as v = m,,  §* = m,, 0 §*.
It worths to note that I(6*) = [F - L] = dk (v, mp,).

B. Case FF >1

The multiplication F'© 7 for F' > 1 reduces to: (i) compute
the length L of a minimal decomposition of 7, and (ii) apply
min{[F - L], D} — L simple transpositions to 7 in a way that
I(F®n) =min{[F- L], D}. This guarantees that a minimal
decomposition of F'® 7 contains a minimal decomposition of
7 as prefix.

Operatively, F'®m can be obtained by running RandB.S on
the reverse of T, that is, on 7t = (w(n),m(n —1),...,m(1)).
Indeed, if a minimal decomposition of * has length L%, then
a minimal decomposition of 7 has length L = D — L. Since
the pair of indices {i,j} is an inversion of 7% if and only if
{n+1—j,n+1—i} is not an inversion of 7, the random decom-
position ((i1,41 + 1)7,..., (ipr, i r + 1)7) of 7%, produced
by RandBS ('), can be easily transformed to the sequence
s={n—i,n+1—i1)p,...,(n—igr,n+1—1igr)r). The
sequence s has the important property that every prefix p of s
produces a permutation o such that I (o) = I(w) + length(p).

Therefore, for F' > 1, the differential mutation of equation

(5) can be computed using the following steps:

1) compute the difference § = n,, © 7, = Ty Lo Try's

2) reverse § in 6%%;

3) perform RandBS(§f) in order to obtain the random
decomposition ((i1,41 + 1)r,...,(igr,ipr + 1)7) of
6% in terms of simple transpositions;

4) let L =D — L then k = min{[F - L], D};

5) compute the extended difference 6* by composing ¢ with
the transformation of the first £ — L simple transpositions
in the sequence above, i.e., §* = FOJ =do(n—i;,n+
1—iy)ro--—o(n—idp_p,n+1—ir_r)r;

6) obtain the mutant as v = 7, ® §* = m,, 0 0*.



Finally, it worths to note that, analogously to the case 0 <
F<1,I(0*)=[F- L) =dgv,mr,).

IV. DIFFERENTIAL EVOLUTION FOR LOP

The Differential Evolution for the LOP Permutations space
(DEP), outlined in Algorithm 2, directly evolves a population
of N P permutations 71, ..., 7p. Its main scheme resembles
that of the classical DE with the internal modification of its
genetic operators and the introduction of a restart mechanism.
All the DEP components are described in the following.

Algorithm 2 Differential Evolution for Permutations

1: Initialize Population
2: while evaluations budget is not exhausted do

3 for i + 1to NP do

4 v; < DifferentialMutation(i, F')
5: vél) R 052) < Crossover(m;, v;, CR)
6: Evaluate f(ugl)) and f(v£2))
7 end for

8 for i + 1to NP do

9: m; < Selection(7;, vgl), Ufz))
10: end for

11: if restart criterion is verified then
12: Restart the Population

13: end if

14: end while

The population is initialized with NP uniformly random
permutations.

For each population individual ;, a mutant permutation v;
is generated according to equation (5) and using the procedure
described in Section III.

The crossover between the population individual 7; and the
mutant v; is performed according to the order based crossover
OBX [21]. OBX is a popular crossover operator for permuta-
tions and has been widely adopted in the context of LOP (see
for example [7] and [19]). Since OBX is not commutative with
respect to the parents, we have decided to generate both the
offsprings, i.e., U§1> + OBX(m;, ;) and UZ@) + OBX(v;, ;).
Moreover, we have slightly modified its scheme to take into
account the DE parameter CR € [0,1]. Given the parents
m; and v;, for every permutation position 1 < k < n, with
probability CR, Ugl)[k:] — m;[k] and ’U§2)[k'] < v;[k]. Then,
the remaining values of v;”’ and v,”’ are assigned following
their order of appearance in, respectively, v; and ;.

After being generated, the two offsprings are evaluated
and compete with the original population individual 7; to
enter the next generation population. Therefore, the next

generation population individual =} is selected according to

! arg max { f(m), f(0), f(07)}

A restart mechanism has been introduced in order to com-
pletely avoid the stagnation of the population. The restart is
triggered when all the population fitnesses are the same. This
roughly corresponds to the case in which all the individuals
have the same genotype, but it is more efficient to check. The
restart procedure tries to diversify the population (exploration)
by also maintaining some information acquired in the pre-
vious evolution stages (exploitation). Indeed, half population
is randomly regenerated, while the remaining individuals are

shuffled each one by a random number in [1, (})] of adjacent
swaps!.

Finally, it is worthwhile to note that DEP behavior, as in its
numerical counterpart, depends from three parameters, namely:
the population size IV P, the scale factor F', and the crossover
probability C'R. However, in this work, while N P is left free
to be set by the user, ' and C'R are self-adapted using a variant
of the popular scheme proposed in [26], where F' is allowed
to vary in (0,2] in order to exploit the extended difference
introduced in Section III-B.

V. EXPERIMENTS

The performances of DEP have been evaluated on a large
set of widely known benchmark instances selected from [1].
Namely, we have selected the benchmark suites 10, SGB, MB
and XLOLIB for a total of 183 LOP instances. Moreover,
in the following, XLOLIB has been split in XLOLIB_150
and XLOLIB_250 containing, respectively, the instances of
size 150 and 250. As described in [1], all the instances are
normalized thus to allow a more easy comparison with the
other optimization methods for LOP.

Optimal values are known for 10, SGB and MB instances,
while the best known solutions of XLOLIB are reported in
[20]. Regarding the size, IO and SGB are composed by rela-
tively small instances, while MB and XLOLIB instances are
of greater size. Moreover, as highlighted in [1], the instances
in IO and XLOLIB are of real-world type, those of SGB are
randomly generated, while the MB instances are somehow in
the middle between real-world and random instances.

DEP has been run 10 times for each problem instance
thus having a total of 10 x 183 = 1830 executions. The
population size parameter N P has been set to 100 after some
preliminary experiments. Similarly to [20], the termination
criterion has been set to 10000 x n? fitness evaluations
except for XLOLIB_250 were a smaller evaluations budget
of 200000 000 has been adopted.

The performance measure employed is the commonly used
average relative percentage deviation (ARPD):

i (Best — Alg;) x 100

Best

i=1

ARPD = ( ) /10 (6)
where Alg; is the final fitness value found by the algorithm
Alg in its i™ run, and Best is the best known value for the
problem instance at hand.

The results for the benchmark suites 10, SGB and MB are
provided, respectively, in the tables I, II and III. On these
benchmarks, the ARPDs of DEP are computed with respect
to the optimal values, while the success rate SR indicates
the percentage of executions where DEP found the known
optimum. Moreover, results in bold denote that the optimum
was reached in every DEP execution.

INote that, as described in Section III, (g) is the maximum number of
adjacent swaps that separate two distinct permutations.

2 Actually, the instances and their optima have
been downloaded from www.optsicom.es/lolib/ and
www.sc.ehu.es/ccwbayes/members/jceberio/LOPRevisited/.



These results clearly indicate the good performances of
DEP. On IO, DEP was able to solve 47 instances over 50,
41 of them in every single run. On SGB, 18 instances over 25
were solved and the worse ARPD has the almost negligible
value of 0.02%. Good results have been observed also on the
greater MB instances. Here, 21 over 30 instances were solved,
13 of them in every single run, and, most remarkably, the
worse ARPD obtained is only of about the 0.01%. Averaging
over all the instances with known optima, DEP was able to:
(i) solve at least in one execution the 82% of the instances, (ii)
solve in every execution the 54% of the instances, (iii) obtain
an overall ARPD lower than the 0.01%.

Tables IV and V report the experimental results on, respec-
tively, the benchmark class XLOLIB_150 and XLOLIB_250.
Here, the DEP results are compared with the state-of-the-art
ARPDs provided in [20]. For every specific instance, the mark
in the second column indicates that the best ARPD comes
from the algorithm MAg (x) or ILSg (e). Furthermore, figure
1 provides the convergence graph of a typical DEP execution.

Considering that the proposed DEP scheme for LOP is
still a preliminary implementation, Tables IV and V show
that, although we were not able to match the performances
of the state-of-the-art algorithms MAg and ILSg, DEP results
are anyway satisfactory. Indeed, on XLOLIB_150, the overall
ARPD of DEP is 0.66% and it is less than 0.5% greater
than that of MAg, i.e., the best known algorithm to date.
The difference is greater on XLOLIB_250, but still small, i.e.,
around the 1%.

Finally, as shown by the convergence graph in figure 1,
DEP typically reaches a good enough solution very soon and
employs more than 3/4 of the evolution for small refinements
(note that, to favor the readability, the graph has been “trun-
cated” on its x-axis). This aspect clearly reveals that there is
room for improvement and that a critical point of the proposed
approach resides in its restart mechanism.

Summarizing, the proposed DEP algorithm: (i) was able to
easily solve the vast majority of 10, SGB and MB instances,
(ii) is competitive with the state-of-the-art algorithms to date on
the hardest LOP instances, and (iii) looks to have potentialities
for further improvements.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have described a discrete Differential
Evolution algorithm for LOP. The key idea is the use of the
algebraic-based differential mutation operator for permutation
spaces already defined in [9] for the permutation flowshop
scheduling problem (PFSP). This choice is due to the very
good performances observed on PFSP. Moreover, both PFSP
and LOP are problems defined on the permutation domain, so
the scheme can be easily adapted to LOP. A further novelty
of this work resides in the possibility to compute, not only
truncated, but also extended differences between permutations,
thus to allow to use also a scale factor parameter greater
than 1 for the discrete differential mutation operator. The
DEP algorithm is completed with the Order Based Crossover
and a restart scheme. Experiments were conducted on a large

TABLE I: Experimental results on IO benchmarks

Instance n  ARPD SR Instance n  ARPD SR
be75eec 50 0 1 t70kl1xx 44 0 1
be75np 50 0 0 t70111xx 44 0 1
be750i 50 0 1 t70nllxx 44 0 1
be75tot 50 0 1 t70ullxx 44 0 1
stabu70 60 0 1 t70wllxx 44 0 1
stabu74 60 0.02 04 | t70x11xx 44 0 1
stabu75 60 0.16 0 t74d11xx 44 0 1
t59b11xx 44 0 1 t75d11xx 44 0 1
t59d11xx 44 0 1 t75ellxx 44 0 1
t59f11xx 44 0 1 t75i11xx 44 0 1
t59il 1xx 44 0 1 t75k11xx 44 0 1
t59nllxx 44 0 1 t75nl1xx 44 0 1

t65bllxx 44 <001 0.6 | t75ullxx 44 0.02 0.8
t65d11xx 44 0 1 tiwS6n54 56 0 1
t65f11xx 44 0.10 0.1 | tiw56n58 56 0 1
6511 1xx 44 0 1 tiwS6n62 56 0 1
t65111xx 44 0 1 tiw56n66 56 0 1
t65nllxx 44 0 1 tiw56n67 56 0 1

toSwllxx 44 0 1 tiw56n72 56  <0.01 0.9
t69r11xx 44 0 1 tiw56r54 56 0 1
t70bllxx 44 0 1 tiw56r58 56 0 1
t70d11xx 44 0 1 tiw56r66 56 0 1
t70d11xxb 44 0.01 0.6 | tiw56r67 56 0 1
t70f11xx 44 0 1 tiw56r72 56 0 1
t70i1 1xx 44 0 1 usa79 79 0.02 0

Avg ARPD = 0.006 Avg SR = 0.89

TABLE II: Experimental results on SGB benchmarks

Instance n ARPD SR Instance n ARPD SR
sgb75.01 75 0.02 0 sgb75.14 75 0.01 0.1
sghb75.02 75  <0.01 0 sgb75.15 75 <001 0.1
sgb75.03 75 0 1 sgb75.16 75 <0.01 0.1
sgb75.04 75  <0.01 0 sgb75.17 75 <0.01 0.3
sghb75.05 75 0 1 sgb75.18 75 <001 0.7
sgb75.06 75  <0.01 0 sgb75.19 75 0 1
sgb75.07 75 <0.01 0.2 | sgb7520 75 <0.01 0.8
sgh75.08 75 <0.01 0.3 | sgb7521 75 <0.01 09
sgb75.09 75 <0.01 0.7 | sgb7522 75 <001 08
sgb75.10 75 <0.01 0.2 | sgb7523 75 0.01 0
sgb75.11 75  <0.01 0 sgb75.24 75 0.01 0
sghb75.12 75 <0.01 0.8 | sgb7525 75 <0.01 0.7
sgb75.13 75 <0.01 0.1
Avg ARPD = 0.002 Avg SR = 0.39

and widely known benchmark suite and the results show that
the proposed approach is competitive with the state-of-art
algorithms for LOP.

As a future line of research, we would like to investigate
other selection and restart schemes with the aim of avoiding
the population stagnation and the slowdown of the convergence
speed observed on the experiments conducted. Another point
to be addressed is to try other mutation schemes, for instance
based on the generating sets given by all the transpositions
(T) and all the insertions (I) by defining randomized sorting
algorithms which are able to find a shortest decomposition of
a permutation using 7" and 1.
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TABLE III: Experimental results on MB benchmarks

Instance n ARPD SR | Instance n ARPD SR
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r100d2 100 0 1 r200b1 200  <0.01 0
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r150al 150 0 1 r200d0 200 <0.01 0.2
r150b0 150 0 1 r200d1 200  <0.01 0
r150b1 150 <0.01 09 1200e0 200 0 1
r150c0 150 0 1 1200e1 200 <0.01 0.2
r150cl 150 0 1 125020 250  <0.01 0
r150d0 150 0 1 1250b0 250 0 1
r150d1 150  <0.01 0 1250c0 250  <0.01 0
r150e0 150 0 1 r250d0 250 <0.01 05
r150el 150  <0.01 0 1250e0 250 <0.01 0.3

Avg ARPD = 0.0009 Avg SR = 0.55

TABLE 1IV: Experimental results on XLOLIB_150 bench-
marks

Best DEP Instance Best DEP
ARPD  ARPD ARPD  ARPD
be75eec_150  0.13 * 0.32 t70f11xx_150  0.46 * 1.35
be75np_150 0.19 * 0.68 t70111xx_150  0.04 o 0.81
be750i_150 0.12 * 0.40 t70n11xx_150 0.29 e 0.85
be75tot_150 0.23 * 1.18 t74d11xx_150  0.18 * 0.83
stabul_150 0.15 * 0.59 t75d11xx_150  0.19 * 0.88
stabu2_150 0.09 * 0.43 t75e11xx_150 033 o 0.72
stabu3_150 0.11 * 0.46 t75k11xx_150  0.13 * 0.30
t59b11xx_150  0.28 * 0.49 t75n11xx_150 025 e 1.04
t59d11xx_150  0.09 * 0.60 tiw56n54_150  0.14 * 0.51
t59f11xx_150  0.22 * 0.75 tiw56n58_150  0.16 = 0.91
t59n11xx_150  0.11 * 0.50 tiw56n62_150  0.18 = 0.68
t65b11xx_150 0.18 e 0.57 tiw56n66_150  0.24 = 0.55
t65d11xx_150  0.19 * 0.87 tiw56n67_150  0.08 = 0.47
t65f11xx_150  0.19 * 0.82 tiw56n72_150  0.16 * 0.51
t65111xx_150  0.14 o 0.49 tiw56r54_150  0.06 * 0.52
t65n11xx_150  0.14 e 0.54 tiw56r58_150  0.15 * 0.65
t69r11xx_150  0.24 * 0.40 tiw56r66_150  0.27 * 0.77
t70b11xx_150 0.24 e 0.57 tiw56r67_150  0.18 * 0.69
t70d11xn_150  0.21 * 0.59 tiw56r72_150  0.14 * 0.70
t70d11xx_150  0.33 * 0.96
Avg ARPDs: DEP 0.66, MAR 0.19, ILSg 0.24, MA 0.19, ILS 0.24

Instance

TABLE V: Experimental results on XLOLIB_250 benchmarks

Best DEP Instance Best DEP
ARPD  ARPD ARPD  ARPD
be75eec_250  0.19 o 1.34 t70f11xx_250  0.16 * 1.33
be75np_250 0.20 * 1.18 t70111xx_250 027 o 1.34
be750i_250 0.17 o 1.19 t70n11xx_250  0.23 * 1.48
be75tot_250 0.12 * 1.14 t74d11xx_250  0.13 * 1.35
stabul_250 0.14 o 1.33 t75d11xx_250  0.15 * 1.04
stabu2_250 0.14 * 1.30 t75e11xx_250  0.18 o 1.07
stabu3_250 0.09 * 1.02 t75k11xx_250  0.18 * 1.39
t59b11xx_250  0.23 * 1.33 t75n11xx_250  0.13 * 1.77
t59d11xx_250  0.13 * 1.16 tiw56n54_250  0.15 * 1.44
t59f11xx_250  0.16 * 1.36 tiw56n58_250  0.12 * 1.12
t59n11xx_250  0.21 * 1.42 tiw56n62_250  0.10 * 1.24
t65b11xx_250  0.16 * 1.65 tiw56n66_250  0.12 * 1.33
t65d11xx_250  0.15 * 1.30 tiw56n67_250  0.14 * 0.91
t65f11xx_250  0.20 * 1.11 tiw56n72_250  0.10 * 0.97
t65111xx_250  0.22 * 0.80 tiw56r54_250  0.11 * 0.79
t65n11xx_250  0.22 * 1.33 tiw56r58_250  0.17 * 1.16
t69r11xx_250 0.24 o 1.32 tiw56r66_250  0.11 * 0.97

Instance

t70b11xx_250  0.21 * 1.61 tiw56r67_250  0.16 * 1.17
t70d11xn_250  0.19 * 1.09 tiw56r72_250  0.15 * 1.18
t70d11xx_250  0.17 * 1.29

Avg ARPDs: DEP 1.23, MAR 0.17, ILSg 0.24, MA 0.17, ILS 0.24
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Fig. 1: DEP convergence graph on tiw56r72_150
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