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Abstract. This paper provides a fitness landscape analysis of the Per-
mutation Flowshop Scheduling Problem considering the Total Flow Time
criterion (PFSP-TFT). Three different landscapes, based on three neigh-
borhood relations, are considered. The experimental investigations ana-
lyze aspects such as the smoothness and the local optima structure of
the landscapes. To the best of our knowledge, this is the first landscape
analysis for PFSP-TFT.

1 Introduction and Related Work

The Permutation Flowshop Scheduling Problem (PFSP) is a scheduling problem
widely encountered in areas such as manufacturing and large scale products
fabrication [13]. The goal of PFSP is to determine the best permutation 7 =
(w[l],...,m[n]) of n jobs that have to be processed through a sequence of m
machines. Preemption and job-passing are not allowed. Here we focus on the
Total Flow Time (TFT) criterion which consists in minimizing the objective

function
n

f(m) =" e(m,wlj)), (1)

j=1

where ¢(i, 7[j]) is the completion time of job 7[j] on machine i and is recursively
calculated in terms of the processing times p; ,[;) as

C(Z ﬂ_bb _ pi,ﬂ'[j] +C(iaﬂ-[j - 1]) ifi=1 andj >1 (2)
’ Pinlj] + i — 1,74]) ifi>1andj=1

Pixfj) + max{c(i,n[j —1]),c(i — 1,7[j])} ifi>1andj>1

The PFSP with the TFT criterion has been demonstrated to be NP hard
for two or more machines [7][19]. Therefore, even due to its practical interest,
many researches have been devoted to finding high quality and near optimal
solutions by means of heuristic or meta-heuristic approaches, for instance with
evolutionary algorithms [5][7][22].
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Meta-heuristic techniques navigate the fitness landscape of the instance at
hand. A fitness landscape is a triple (S, N, f) where: S is the set of solutions, A is
a neighborhood relation among the solutions in S, and f is the objective/fitness
function to optimize.

The fitness landscape can be analyzed by studying several features of inter-
est [18][24][28]. These analyses are also important to understand the behavior
of meta-heuristics and evolutionary algorithms [3][16] applied to combinatorial
optimization problems [1][6].

A first aspect concerns the neutrality of the landscape and in general the clas-
sification of the solutions/points according to the fitness differences among the
neighbors. There exists seven types of points: SLMIN, LMIN, IPLAT, SLOPE,
LEDGE, LMAX and SLMAX. They are described in Figure 1 [15]. A point P
is of type IPLAT if all its neighbors have the same fitness values as P. A point
is of type SLMAX (SLMIN) if it is a strictly local maximum (minimum), while
the types LMAX and LMIN are non strict local maxima (or minima). A point
P is a SLOPE if some of its neighbors have a greater fitness value and some
other ones have a lower value than P. Finally, a LEGDE point P has also some
neighbors with the same fitness values as P. The distribution of point types
gives a quantitative analysis about the neutrality of the fitness landscape. In
particular, a fitness landscape is more or less neutral according to the higher or
lower percentage of IPLAT, LEGDE, LMAX and LMIN.

A second feature is to study the landscape correlation analysis [27]. Its main
tool is the autocorrelation coefficient p(1) which quantifies how much the fitness
values of neighbor solutions are related to each other. Higher values for p(1) mean
that the landscape is smooth, while a small value means a rugged landscape.

A third analysis tries to check the presence of the so called ”big-valley”
hypothesis [14], i.e. if local minima of good quality are clustered and surround
the global minimum point. Some of the combinatorial optimization problems
have this structure and this is a positive characteristic for search algorithms,
because it is easier to search the global optimum.

Another point that has been studied is the distribution of local minima and
their distance from the global minimum [17]. Again, the distribution and the
distance from local and global minima is strictly related to the performances of
meta-heuristic algorithms.

Finally, another aspect of interest is the concept of fitness barrier [24], i.e.
the number of steps necessary for exiting from a local minimum and finding a
better point. A search space with a low fitness barrier can be better explored by
a meta-heuristic algorithm because there are less chances that it can be trapped
in a local minima.

In our case, S is the set of all the n-length permutations of jobs, and f is
the total flow time objective of equation (1). Moreover, three fitness landscapes
generated by three different neighborhood relations are considered, namely: the
adjacent swap (ASW), interchange (INT) and insert (INS) neighborhoods [2][23].
ASW and INT neighbors are obtained by swapping two items in a permutation.
While for INT neighbors no restriction is considered on the items to swap, the
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ASW neighborhood limits the swap to adjacent items. Finally, the INS neighbor-
hood is obtained by removing an item and inserting back in a different position.
To the best of our knowledge this is the first analysis conducted on PFSP-TFT.

The rest of the paper is organized as follows. Section 2 briefly describe the
experimental setting used throughout the paper. A classification of the different
type of solutions is provided in Section 3 together with an analysis of the land-
scape neutrality. Section 4 analyze the smoothness of the spaces. Sections 5 and
6 provide a study of the local minima distribution, while Section 7 discusses some
aspects about the characteristics of the basins of attraction. Finally, conclusions
are drawn in Section 8

2 Experimental Setting

The experiments were held over a suite of 120 PFSP-TFT instances: ten problem
instances for each m x m configuration, with n € {10,20,50,100} and m €
{5,10,20}. The n = 20,50,100 instances were taken from the widely known
benchmark suite of Taillard [25], while the 10 jobs instances were randomly
generated using the same scheme of [25].

When the experimental analyses involve local minima, these have been ex-
actly located through exhaustive enumeration for n = 10 instances, while for the
larger instances they were collected by means of 2000 local searches (each one
starting from a randomly generated seed solution) performed using the “best
improvement” strategy.

Finally, while the global optima of the 10 jobs instances were exactly identi-
fied, for the other instances we have considered the best known solutions taken
from the state-of-the-art results reported in recent works [19][22].

3 Position Type Distributions and Neutrality Analysis

In this section we provide a classification of the position types [15] for the three
search spaces.

Fig. 1: Position Types

The data in Table 1 have been obtained by a complete enumeration of the n!
solutions in the search space. Due to the cardinality, n = 10 has been considered.
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Table 1: Position Type Distributions in Percentage Values

n X m|Neigh.SLMIN|LMIN|SLOPE|LEDGE|IPLAT|LMAX|SLMAX
ASW 0.41} 0.05 89.85 9.43 0.00 0.06 0.20
10 x 5| INT < 0.01] < 0.01 80.28 19.71 0.00 <0.01] <0.01
INS < 0.01| < 0.01 76.87 23.13 0.00 <0.01] <0.01
ASW 0.55] 0.05 93.91 5.07 0.00 0.04 0.38
10 x 10| INT < 0.01] <0.01 87.93 12.07 0.00 <0.01] <0.01
INS < 0.01| < 0.01 81.27 18.72 0.00 <0.01] <0.01
ASW 0.48;  0.03 94.26 4.76 0.00 0.04 0.42
10 x 20| INT < 0.01] <0.01 89.72 10.28 0.00 <0.01] <0.01
INS < 0.01] <0.01 84.38 15.62 0.00 <0.01] <0.01

Table 1 shows that the vast majority of the points are SLOPE and LEDGE
points. Other types are very rare and, in particular, IPLAT points are not present
in none of the three search spaces.

SLOPEs are more frequent in the ASW search space. Moreover, it looks
that the quantity of SLOPESs increases with m. Therefore, the neutrality of the
landscape is very likely to decrease when the number of machines increases.

The study of position types for n > 10 is possible by a random uniform
sampling of the solutions in the search space. The results of this investigation
are presented in Table 2. Note that, since the sampling have produced only
SLOPE and LEDGE points, Table 2 only shows the percentage of SLOPEs. The
remaining percentage are LEDGES.

Table 2: Percentage of SLOPE points

n X m [ASW| INT| INS
20 x 5 |81.89(58.30(48.40
20 x 10 [85.10{70.85[57.15
20 x 20 92.09(76.15(58.10
50 x 5 |49.52| 8.45| 7.55
50 x 10 [58.67|22.10{12.40
50 x 20 |78.41|37.90(16.15
100 x 5124.70| 0.10{ 0.20
100 x 10|31.51] 2.05| 0.35
100 x 20{49.79| 7.05| 1.40

Under random sampling, Table 2 shows that the number of SLOPEs increases
with m and decreases with n. For (relatively) small m and large n, LEDGE points
are more frequent than SLOPESs, thus denoting that the neutrality degree is
very likely to increase with n. This phenomenon is even stronger for the INT
and INS neighborhoods. In these cases, as n increases, the number of SLOPESs
drastically decreases. In particular, when n = 100, almost all the sampled points
are LEDGEs.
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In Table 3, we show the neutrality degrees [15], i.e. the number of the average
percentage of neighbors with the same fitness. The percentage is computed with
respect to the neighborhood size. For each configuration n x m, we report the
minimum and the maximum values. Data for n = 10 have been obtained by a
complete enumeration, while for n € {20,50,100} a random uniform sampling
of N = 10000 points has been drawn.

Table 3: Average Neutrality Degree per Solution in percentage values

nxm ASW INT INS
10 x 5 |[1.07, 1.10]| [0.44, 0.48][[0.31, 0.36]
10 x 10 |[0.59,0.62]| [0.27,0.30]|[0.24, 0.28]
10 x 20 |[0.55,0.59]| [0.22,0.26]|[0.20, 0.22]
20 x 5 |[5.34,5.41]| [0.14, 0.43][[0.34, 0.37]
20 % 10 |[5.31,5.35]| [0.15,0.36]([0.32,0.34]
20 x 20 [[5.30,5.32]| [0.11,0.17]([0.31,0.33]
50 x 5 |[2.12,2.18]| [0.17,0.29][[0.08, 0.09]
50 x 10 [[2.09,2.12]| [0.10,0.15]([0.07,0.08]
50 x 20 [[2.07,2.08]|[0.074, 0.10]|[0.06, 0.07]
100 x 5 |[1.09, 1.13]| [0.14,0.22][[0.03,0.04]
100 x 10|[1.04, 1.08]| [0.12,0.19]|[0.02, 0.03]
100 x 20([0.99,1.04]| [0.10,0.15]|[0.01, 0.02]

These results clearly confirm the previous indications about the neutrality of
the search spaces.

4 Landscape Correlation

Here, we study the autocorrelation coefficients and the correlation lengths for
the three search spaces [27].

For each problem instance considered, a random walk of N = 500000 steps
has been performed and the IV visited solutions, together with their fitness val-
ues, have been registered. Then, the autocorrelation p(1) and the correlation
length I = (In(|p(1)|)) " have been computed. Intuitively, p(1) measures the sta-
tistical correlation between neighboring solutions, while the correlation length
gives an indication of how far it is possible to go without incurring in a steep
descend or ascend.

The results of the experiment have been aggregated for every n x m config-
urations and shown in Table 4.

Table 4 shows that the autocorrelation is very large and becomes close to
1 when n increases. As described in [27], this is an evidence that the three
spaces are very smooth, i.e., neighboring solutions tend to have similar fitness
values [8]. This aspect is very important because search algorithms [10][11][12]
are, in general, positively affected by the smoothness of the underlying fitness
landscape.
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Table 4: Autocorrelations and Correlation Lengths

nXm Autocorr. Corr. Lengths
ASW|INT|INS/ASW|INT| INS
10 x5 | 0.92]| 0.74|0.81| 12.49| 3.26| 4.77
10 x 10| 0.92| 0.73|0.81| 11.79| 3.25| 4.68
10 x 20| 0.93| 0.74|0.82| 15.74| 3.40| 5.03
20x5 | 0.97] 0.86/0.91| 37.16| 6.52|10.63
20 x 10| 0.96| 0.85]0.90| 25.87| 6.31| 9.79
20 x 20| 0.96| 0.85|0.90| 22.76| 6.15| 9.41
50 x5 | 0.99] 0.94]|0.96|160.34|15.74|27.54
50 x 10| 0.99| 0.93]0.96| 97.75|14.20|24.01
50 x 20| 0.99| 0.93]0.96| 70.49(14.16|22.94
100 x 5| 1.00{ 0.97|0.98|640.95(29.88|53.67
100 x 10| 1.00] 0.96|0.98|272.42|26.92|47.28
100 x 20| 0.99| 0.96| 0.98]144.18|24.46|41.60

5 Fitness-Distance Analysis of the Local Minima

As known in literature, evidence of the “big-valley” structure for a given fitness
landscape can be inferred by showing that the fitness-distance correlation [26] of
the local minima is large enough. A value larger than 0.15 is generally accepted

as threshold [14][15].

For each n x m configuration and for each neighborhood relation, Table 5
provides the minimum and maximum correlation coefficients between the fitness
and the distance of the local minima to the presumed global minimum. Moreover,
also the number of instances presenting a correlation larger than 0.15 is shown.

Table 5: Fitness-Distance Correlations

ASW INT INS
nxm fdc F##corr.inst. fdc F#corr.inst. fdc Fcorr.inst,.
10 x 5 |[0.30,0.85]  10/10 [0.33,0.70] 10/10 [0.33,0.97] 10/10
10 x 10 |[0.32,0.75]  10/10 [0.29,0.69] 10/10 [0.49,0.88] 10/10
10 x 20 |[0.46,0.84]  10/10 [0.33,0.73] 10/10 [0.57,1.00] 10/10
20 x 5 |[0.39,0.83] 10/10 [0.25,0.52] 10/10 [0.19,0.50] 10/10
20 x 10 {[0.48,0.71]  10/10 [0.25,0.52] 10/10 [0.03,0.39] 7/10
20 x 20 |[0.45,0.69] 10/10 [0.20,0.51] 10/10 [0.17,0.51] 10/10
50 x 5 |[0.47,0.68] 10/10 [0.10,0.30] 7/10 [0.07,0.19] 4/10
50 x 10 |[0.46,0.59]  10/10 [0.06, 0.36] 4/10 [0.05,0.18] 1/10
50 x 20 {[0.44,0.55]  10/10 [0.09,0.34] 5/10 [0.06,0.25] 3/10
100 x 5 {[0.50,0.64] 10/10 [0.04,0.21] 1/10 |[-0.01,0.13] 0/10
100 x 10/[0.46,0.59] 10/10 |[-0.02,0.20] 3/10 |[-0.06,0.14] 0/10
100 x 20{[0.37,0.54]  10/10 [0.00,0.13] 0/10 |[-0.09,0.20) 1/10
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These results show that the “big-valley” hypothesis is clearly more evident
for the ASW neighborhood than for INT and INS. Moreover, in the latter cases,
the number of correlated instances seems to decrease when n increases!. Finally,
the number of machines m does not seem to influence the correlation coefficients.

6 Distribution of the Local Minima

The distribution of the local minima has been investigated by means of two
experiments. The first aims at estimate the centrality of the global minimum with
respect to the other local minima, while the second goes in the opposite direction
and analyzes the distances of the local minima from the global minimum.

The optimum centrality is defined as the percentage value oc defined as

oc = 100 - dlmin - dgmin’ (3)
dgmin

where djmin and dgpmin are, respectively, the average pairwise distance among
the local minima and the average distance from the nearest global minimum.
The measure oc estimates how much the global minimum is centrally located
with respect to the other local minima [9]. A particular distinction has to be
made between positive (i.e., dimin > dgmin) and negative (i.e., dimin < dgmin)
values. For each n X m configuration and for each neighborhood relation, Table
6 reports the minimum and maximum oc values together with the number of
instances where oc > 0.

Table 6: Global Optimum Centrality

ASW INT INS
oc # oc>0 oc # oc>0 oc # oc >0
10 x 5 | [5.55,34.44] 10/10 |[—28.97,—15.91] 0/10 |[-6.92,40.74] 9/10
10 x 10 |[-5.44,26.83] 9/10 |[—34.89,—22.55] 0/10 [4.69,23.38] 10/10
10 x 20 |[15.21,34.61] 10/10 |[—37.89,—18.83] 0/10 |[—0.79,100.00] 9/10
20 x 5 | [0.00,7.20] 10/10 [1.18,8.06] 10/10 | [0.23,10.10] 10/10
20 x 10| [-0.94,4.41] 9/10 [0.30,5.99] 10/10 | [-1.28,6.82] 6/10
20 x 20| [0.63,4.83] 10/10 [1.92,7.50] 10/10 [0.21,5.70] 10/10
50 x 5 | [0.64,4.01] 10/10 [0.67,2.03] 10/10 | [-0.08,1.59] 9/10
[ ]
[

nxXxm

50 x 10 | [-0.83,1.89] 8/10 0.48,1.67 10/10 | [-0.18,1.44] 9/10
50 x 20 | [—0.28,2.20] 8/10 0.33,1.61]  10/10 | [—0.06,1.26] 9/10
100 x 5| [0.83,2.88] 10/10 | [-0.01,0.31] 9/10 | [-0.58,0.47] 7/10
100 x 10[ [—0.76,1.46]  6/10 [0.06,0.74]  10/10 | [-0.57,0.65] 9/10
100 x 20| [-0.71,0.79] 5/10 | [-0.09,1.05]  7/10 | [-0.20,0.52] 7/10

Table 6 shows that, except the INS neighborhood in the 10-jobs instances,
only few oc values are negative. Moreover negative values have a very low magni-

! Note that the results of the INS neighborhood on the 10-jobs instances, due to the
very small number of local minima, are not too much significant.
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tude. This suggests us to conclude that the global optimum tends to be located
inside the region of the local optima. Moreover, oc tends to decreases when n in-
creases. Therefore, it is likely that the global optimum tends to “move” towards
the borders of the local optima region when n increases.

The opposite analysis has been conducted by comparing the observed distri-
bution of the local minima distances from the global minimum with respect to
their expected distribution in the case that they were randomly sampled. Figures
2a, 2b, and 2c¢ report the observed (blue bars) and expected (red bars) distribu-
tions for the first instance of the 50 x 10 problems, respectively, for ASW, INT,
and INS (the other instances seems to have a similar behaviour).

Fig. 2: Local Minima Distribution w.r.t. Global Min. for ASW

300
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These results show that the observed distribution is approximately similar
to the expected one, thus local minima look like as they are randomly sampled
from the set of all the permutations.

Furthermore, for ASW and INS the observed minima are a bit more than
the estimated ones at the left of the distribution mode. The opposite happen for
INT.

7 Fitness Barriers

In this section we study the fitness barriers [24], restricted to the ASW search
space, which is the basis for the differential mutation operator described in
4120 [21].

For every instance (n = 20, 50,100 and m = 5,10, 20), we have found N =
10000 local minima by means of a simple local search based on adjacent swap
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Fig. 3: Local Minima Distribution w.r.t. Global Min. for INT

B Obsened MNo. Local Min.
W Expected No. Local Min.

39

41 42 43 a4 45 46

40
Distance INT

47

49

Fig. 4: Local Minima Distribution w.r.t. Global Min. for INS

W Obsened No. Local Min.
W Expected Nao. Local Min.

33

34 35 36 37 38 39

Distance INS

41

—
42



10 Baioletti, Santucci

moves. For each local minimum z, we have found, through a breadth-first search,
the closest point y which has a smaller fitness, i.e., f(y) < f(x). We have then
considered two variables: the length L of the shortest path from x to y, and
the largest fitness value H of the points in the path. Starting from H, we have

computed the relative variation R = H;(J; ()I).

L indicates how many steps one must go away from a local minimum in order
to escape from its attraction basin. H is the barrier height and denotes which is
the highest point one must pass through in order to find a better local minimum.

L has very low variability and, in all the experiments, presents an average
value very close to 3. This means that very often it is sufficient to walk for three
steps from a local minimum in order to find a better point.

The analysis of R shows that, in order to escape from a local minimum, it is
sufficient to accept values which are around 1% (for n = 20), around 0.4% (for
n = 50) and around 0.2% (for n = 100) worse than the minimum.

8 Conclusion

In this paper we have investigated the structure of PESP-TFT instances. Three
different landscapes have been considered by analyzing the three most popular
neighborhood relations for PFSP solutions.

The experiments provide indications on the smoothness and the local optima
structure of the landscapes. The main result regards the evidence of a “big valley”
structure on the distribution of the local optima. With this regard, also a new
measure of optimum centrality has been introduced. Moreover, depending on the
neighborhood considered, different indications have emerged.
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