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Abstract—In this paper we propose a new system for lym-
phoma classification through automatic biopsy images analysis.
The system is composed by two main modules: a computer
vision module that extracts numerical features from the biopsy
images acquired from a microscope, and a machine learning
module that, basing on the numerical features of the images,
builds an automated classifier that predicts the class label (i.e.,
the lymphoma type) of a new and unrecognized biopsy image
coming in the system. Particle Swarm Estimation of Distribution
Algorithm (PSEDA), a recently proposed meta-heuristic tech-
nique that hybridize Particle Swarm Optimization (PSO) and
Estimation of Distribution Algorithms (EDAs), has been employed
in order to perform the training of the classifier. Experiments
were conducted on a standard and publicly available dataset
of lymp-nodes tissue biopsy images, and they show that our
approach results in a good classification accuracy with respect to
other state-of-the-art and evolutionary classification schemes.

I. INTRODUCTION

During the last years, automated image analysis tools have
received a growing attention in the medical research field.
Devices for automated image acquisition are able to provide
a large amount of images of medical and biological interest.
Think for example at biopsies and tissues images acquired by
an electronic microscope, brain TAC or mammograms images.
However, while medical image acquisition systems can provide
a so large amount of images data, human analysis of these data
is still very slow. This issue introduces the need for computer
vision and machine learning techniques able to automatically
analyze the acquired images and to provide some “human-
understandable” results of their elaboration, for example in
form of an automatic judgment or diagnosis. Although auto-
mated diagnoses are not mandatory for the doctor judgment,
they can be employed as a filter for the large amount of data
the doctor should analyze.

In this work we propose an automated system that, by
analyzing a lymph-nodes biopsy image, is able to classify the
type of lymphoma affecting the tissue contained in the biopsy
image. Malignant lymphoma is a cancer affecting lymph-
nodes. Three different types of malignant lymphoma are usu-
ally distinguished from the medical community, i.e., “chronic
lymphocytic leukemia” (CLL), “follicular lymphoma” (FL),
and “mantle cell lymphoma” (MCL). Basing on the recognized
category of lymphoma, medical treatments on the affected
patient can widely vary, thus this problem represents a relevant
and practical issue for medical community.

The biopsies dataset adopted in this work is taken from
[19], and it is composed by 374 images acquired through
a brightfield microscope and representing biopsies sectioned
and stained with hematoxylin/eosin. Moreover, for each biopsy
image, the dataset provides also the information of the type of
lymphoma to which it belongs.

The designed system is composed by two main modules:
the computer vision module that elaborate the images in order
to extract some numerical features, and the machine learning
module that, basing on the numerical features of the images,
builds an automated classifier that predicts, with an hopefully
good accuracy, the class label (i.e., the lymphoma type) of a
new and unrecognized biopsy image coming in the system.

For the computer vision module we have adopted some
standard image features extraction techniques [10], [23], while
the machine learning module has been designed by using the
Particle Swarm Estimation of Distribution Algorithm (PSEDA)
meta-heuristic [18].

The number of extracted features has been kept low in
order to improve the execution times of the system as a
whole. The numerical space induced by the features ex-
traction step is probed by PSEDA which is a population-
based optimization technique originally proposed in [18]. It
combines some aspects of two widely adopted classes of
meta-heuristic techniques, that is, Particle Swarm Optimization
(PSO) [13] and Estimation of Distribution Algorithms (EDAs)
[15]. Indeed, PSEDA combines the typical swarm-intelligence
dynamics of PSO with the EDAs evolutionary search schemes
based on an explicit probabilistic model of the population of
candidate solutions. Although other PSO-EDAs hybridizations
have already been proposed in literature (see for instance [5],
[9], [24]), PSEDA exploits the EDAs probabilistic search in
the PSO dynamics in a more neatly way.

In this work, PSEDA has been applied in order to build
the prediction function of the biopsies classifier system. To
do this, the training phase of the classification task has been
cast to a numerical optimization problem by adopting some
appropriate fitness functions that allow to judge the quality of a
classifier on a given training set of labeled data (i.e., the images
features and the class labels). A similar approach, although not
employed for images classification, has been proposed in [3].

The rest of the paper is organized as follows. In Section
II, the PSEDA numerical optimizer is described. Section III
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provides a detailed description of the full classification system
that is the aim of this work. Experimental results are provided
in Section IV, while conclusions are drawn in Section V.

II. PARTICLE SWARM ESTIMATION OF DISTRIBUTION
ALGORITHM

A. The philosophy

Particle Swarm Estimation of Distribution Algorithm
(PSEDA), previously proposed in [18], is an iterative
population-based meta-heuristic technique for numerical op-
timization problems that combines the typical swarm-
intelligence dynamics of PSO [13] with the EDAs evolutionary
search schemes [15] based on an explicit probabilistic model
of the population of candidate solutions.

As in PSO, at each generation, a PSEDA individual tends
to move in the search space toward a stochastic combination
of its current position, the personal and social best positions
found so far, and by also taking into account its previous search
direction. The implementation of this stochastic movement in
PSEDA simultaneously represents the difference with PSO and
the analogy with the EDAs. Indeed, in PSEDA, the velocity
concept of PSO is not employed and each individual moves to
a new position in the search space by sampling a probability
distribution built basing on the attraction positions adopted in
PSO.

However, it is remarkably to note that, conversely from
the more common EDAs in literature (see for instance [6],
[8]), the PSEDA probabilistic model is not unique for the
whole population. Indeed, each PSEDA individual has its own
probabilistic model that iteratively updates and samples in
order to move in the search space. Thus, instead of exploiting
the statistical properties of the fittest part of the population as a
whole (as done by typical EDAs), PSEDA relies on the implicit
inter-dependencies modeling mechanism of swarm-intelligence
based schemes [12]. Indeed, some statistical parameters are
shared among the PSEDA probabilistic models, that is, among
the PSEDA individuals. A similar approach has been also
adopted in [11], [1].

B. The technique

A PSEDA population is composed by n individuals ar-
ranged in a neighborhood topology that defines the inter-
individuals influences. Although in PSEDA, as in PSO, various
neighborhood topologies can be adopted, in this work we
have focused on the fully informed topology where the social
attractor of each individual is represented by the population
global best position visited so far.

Formally, given the objective/fitness function f : Θ → R
(with Θ = [lk, uk]d ⊆ Rd and 1 ≤ k ≤ d) to minimize, the
genotype of a generic PSEDA individual i (with 1 ≤ i ≤ n)
at a generic generation t (with t ∈ N+) is represented by the
following d-dimensional vectors:

• its current position at generation t, i.e., xi,t ∈ Θ,

• its personal best position found so far, i.e., pi,t =
arg min
s≤t

f(xi,s),

• its social attractor, i.e., the population global best
gt = arg min

1≤i≤n
f(pi,t) that is shared among the whole

population,

• the position, personal best, and global best at the previ-
ous generation, i.e., respectively, xi,t−1, pi,t−1, gt−1 ∈
Θ.

At each generation t, the genotype of a generic individual
i is adopted to build the joint probability distribution Pi,t
from which the next individual position is sampled, i.e.,
xi,t+1 ∼ Pi,t. It is assumed that the d-dimensional probability
distribution Pi,t is factorized by a product of d unidimensional
and independent densities, i.e., Pi,t =

∏
1≤k≤d Pi,t,k. There-

fore, each dimension k of xi,t+1 is independently sampled
from Pi,t,k, i.e., xi,t+1,k ∼ Pi,t,k.

Each Pi,t,k is modeled as a weighted finite mixture [20]
of the following probability distributions:

• T N (x)
i,t,k, i.e., a normal probability distribution, with

mean xi,t,k and standard deviation σ(x)
i,t,k, truncated in

the search space interval [lk, uk],

• T N (p)
i,t,k, i.e., a normal probability distribution, with

mean pi,t,k and standard deviation σ(p)
i,t,k, truncated in

the search space interval [lk, uk],

• T N (g)
t,k , i.e., a normal probability distribution, with

mean gt,k and standard deviation σ
(g)
t,k , truncated in

the search space interval [lk, uk],

• Uk, i.e., a uniform probability distribution on the
search space interval [lk, uk],

• Pi,t−1,k, i.e., a relaxed variant of the previous-
generation mixture Pi,t−1,k composed by only
the three truncated normal distributions T N (x)

i,t−1,k,
T N (p)

i,t−1,k, T N (g)
t−1,k of the previous generation.

These component distributions are respectively weighted
by the PSEDA parameters wx, wp, wg, wu, wm ∈ [0, 1] that
sum up to 1. Therefore, the sampling procedure for the
generic mixture Pi,t,k is divided in two phases [20]. First,
the component distribution to sample is chosen by means of a
roulette wheel tournament basing on the components weights.
Then, the chosen component distribution is sampled. In the
case that Pi,t−1,k has been chosen in the first phase, the
sampling process is repeated using as weights wx, wp, wg
normalized in order to sum up to 1. Moreover, for the sake of
completeness, we report that a truncated normal distribution
can be sampled either by using the accept-reject method, the
inverse transform sampling method, or a combination of both
[4].

Each one of the mixture’s component distributions allows a
PSEDA individual to mime the typical PSO swarm-intelligence
dynamics by means of probabilistic search mechanisms. In-
deed, due to the high probability density around the mean
of a normal distribution, T N (x)

i,t,k, T N (p)
i,t,k, and T N (g)

t,k , re-
spectively model: the PSO inertial property to stay in the last
visited position, the PSO cognitive tendency to move toward
the personal best visited so far, and the PSO social tendency

176



to move toward the population global best. The relaxed variant
of the previous-generation mixture Pi,t−1,k tries to reproduce
in PSEDA the velocity concept of PSO, while the uniform
distribution Uk has been introduced in order to regulate the
exploration/exploitation balance of the evolutionary search.

Although the statistical models adopted are not explicitly
multivariate, PSEDA, like PSO, implicitly and hiddenly copes
with the inter-dependencies among the dimensions of the
fitness landscape by means of its swarm-intelligence based
behavior. Moreover, the use of truncated probability distribu-
tions allows to completely avoid the out-of-bounds issue that
is typical of PSO and of many other evolutionary schemes.

Furthermore, note that the population diversity thus the
step-size and the convergence speed of the algorithm highly de-
pend on the standard deviation parameters of the three normal
distributions that compose each mixture, i.e., σ(x)

i,t,k, σ(p)
i,t,k, and

σ
(g)
t,k . In our original paper [18], a common value, that fades

during the generations, has been adopted for each individual,
dimension and component distribution. Here, we introduce a
new technique that automatically adapts the standard deviation
parameters depending on the particular component distribution,
dimension and individual they belong to. Formally, just before
the new position sampling at generation t, σ(x)

i,t,k, σ(p)
i,t,k, σ(g)

t,k
are computed as follows:

σ
(x)
i,t,k←

{
min{|xi,t,k − pi,t,k|, |xi,t,k − gt,k|} if g.t. 0

ε
(x)
i,t,k otherwise

(1)

σ
(p)
i,t,k←

{
min{|pi,t,k − xi,t,k|, |pi,t,k − gt,k|} if g.t. 0

ε
(p)
i,t,k otherwise

(2)

σ
(g)
t,k←

{
min{|gt,k − xi,t,k|, |gt,k − pi,t,k|} if g.t. 0

ε
(g)
i,t,k otherwise

(3)

where ε(x)i,t,k, ε(p)i,t,k, ε(g)i,t,k are small random numbers uniformly
distributed in [0, 0.01]. All the equations (1), (2), and (3) rely
on the same basic idea. For each one of the three normal
distributions of a given dimension and individual, the standard
deviation parameter is set to the distance/difference between
the mean/peak of the normal itself and the closer mean/peak
among the other two normal distributions. In this way, in the
case that a normal distribution has been chosen in the sam-
pling procedure, and for the well known properties of normal
distributions [21], at least (since the normal distributions are
truncated) the 34.1% of chance to be sampled is given to
the points located between the peaks/means of the normal
distributions. Hopefully, this mechanism should be able to
automatically switch the PSEDA search from an explorative to
an exploitative behavior and vice versa during the evolution.
Obviously, in the case that the three peaks are co-located, the
small random movement allows anyway to progress the search
in the surround of the last visited position.

Finally, for the sake of clarity the PSEDA pseudo-code is
reported in Algorithm 1.

III. LYMPHOMA CLASSIFICATION THROUGH BIOPSY
IMAGE ANALYSIS

A. The System Architecture

The aim of this work is to automatically classify a lymph-
nodes biopsy image in one of three types of malignant lym-

Algorithm 1 PSEDA Pseudo-Code
1: procedure PSEDA
2: t← 0
3: Randomly initialize the n individuals
4: while t < M do . M is the allowed number of generations
5: for all individuals i do
6: Evaluate fitness f(xi,t)
7: Save the previous personal best pi,t−1

8: Update personal best pi,t
9: end for

10: Save the previous global best gt−1

11: Update global best gt
12: for all individuals i do
13: for all dimensions k do
14: Compute σ(x)

i,t,k , σ(p)
i,t,k , σ(g)

t,k according to equations (1), (2), (3)
15: Save the previous position xi,t−1

16: Sample xi,t+1,k from Pi,t,k

17: end for
18: end for
19: t← t+ 1
20: end while
21: end procedure

phoma, i.e., “chronic lymphocytic leukemia” (CLL), “follicular
lymphoma” (FL), and “mantle cell lymphoma” (MCL). Each
biopsy image has been acquired through microscope and,
before the acquisition, the lymph-nodes tissues have been sec-
tioned and stained with Hematoxylin/Eosin (H+E) as described
in [19]. Randomly selected images from each lymphoma class
are reported in Figures 1, 2, 3.

Fig. 1: Example of biopsy image from class CLL

Fig. 2: Example of biopsy image from class FL

The automatic classification is performed following the
macro-architecture reported in Figure 4. First, each biopsy
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Fig. 3: Example of biopsy image from class MCL

image is preprocessed and then converted to a low-dimensional
numerical vector through a process of features extraction.
Then, a set of already classified images (the training set) allows
the system to compute its internal parameters, thus to train a
classification scheme that is employed in order to predict the
class label of each incoming test image.

Fig. 4: System Architecture

B. Image Preprocessing and Features Extraction

The only image preprocessing step adopted is the conver-
sion of the original image to a gray-scale format. In this way,
the numerical features are extracted on an image composed by
only one color channel.

Regarding the features extraction, we have employed two
different kinds of features, that is, color and geometric features.
The 3 color features considered are the intensity average, stan-
dard deviation, and skewness, that have been already employed
in various other works (see for example [10]). Instead, the
geometric features considered are the 7 Hu moments that
have been extracted using the specific function included in
the OpenCV library [17]. These kind of geometric features

have been widely adopted in literature (see for example [23]),
mainly for their invariance with respect to the image scale,
rotation, and reflection.

Finally, note that, after the features extraction, a 10-
dimensional numerical vector is made for each image. This
low dimensionality allows to speed-up the classification step
and to avoids the “curse of dimensionality” issue, observed in
various classification technique [16], as well.

C. Classification through PSEDA

The classification of a vectorized image a ∈ R10 is
performed through the following prediction function:

hx(CLL),x(FL),x(MCL)(a) = arg min
c∈{CLL,FL,MCL}

d(x(c), a) (4)

where a generic x(c) ∈ R10 is a representative of the class
c ∈ {CLL,FL,MCL} in the 10-dimensional space induced
by the features extraction process, while d(·, ·) is the usual Eu-
clidean distance. Essentially, h : R10 → {CLL,FL,MCL}
assigns, to the vectorized image taken in input, the label of
the closest class representative. Note that, due to the low
dimensionality (10) and the low number of classes (3), the
computational time of this function is almost negligible.

A training phase is needed in order to obtain a good setting
for the parameters of the prediction function h, i.e., the classes
representatives x(CLL), x(FL), x(MCL). However, in our ap-
proach, the training task can be easily cast to an optimization
problem. Indeed, since each class representative is a point in
R10, the learning of the prediction function parameters can be
seen as the problem of finding the optimal position for each
class representative in R10 given the training set T of already
labeled images. Thus, the optimization search space Θ where
to apply PSEDA (or other numerical optimization techniques)
is a 30-dimensional space (3 classes × 10 numerical features),
i.e., Θ ⊆ R30, and a generic PSEDA candidate solution x ∈ Θ
is composed by 3 10-dimensional blocks that encode the 3
class representatives, i.e., x = 〈x(CLL), x(FL), x(MCL)〉 where
x(c) ∈ R10 for c ∈ {CLL,FL,MCL}.

In order to evaluate the quality of a generic solution x on
the training set T , the two fitness functions adopted in [3] have
been taken into account:

ψ1(x) =
1

|T |
∑

(ai,ci)∈T

δ(x, ai, ci) (5)

ψ2(x) =
1

|T |
∑

(ai,ci)∈T

d(ai, x
(ci)) (6)

where ci ∈ {CLL,FL,MCL} is the class label of the training
image ai ∈ R10, d : R10 × R10 → [0, 1] is the Euclidean
distance normalized to range in [0, 1]1, and

δ(x, ai, ci) =

{
1 if hx(CLL),x(FL),x(MCL)(ai) 6= ci
0 otherwise

Both the fitness functions range in [0, 1] and have to be
minimized. ψ1 represents the error rate on the training set,

1The euclidean distance is normalized as in [3], that is, each distance
component is normalized with respect to the maximal range in the dimension
and the sum of distance components is divided by the dimensionality m.
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while ψ2 computes the average distance of training instances
from the class representative of the known classes. ψ1 is a
step function that can vary with “jumps” equal to 1/|T | only,
while ψ2 it is hoped to provide a greater continuity, although
it can introduce large plateaus in the search space. Moreover,
ψ2 has a slightly lower complexity than ψ1 since each training
instance is compared with only one class representative instead
of all the three.

Finally, a third fitness function ψ3 is introduced in order
to combine the characteristic of both ψ1 and ψ2:

ψ3(x) = 0.75 · ψ1(x) + 0.25 · ψ2(x) (7)

This function is a weighted convex combination of the pre-
vious, thus it still ranges in [0, 1]. The weights unbalanced
toward ψ1 are motivated by some preliminary experiments that
we have conducted.

As a consequence of the choice of three different fitness
functions, three PSEDA schemes, differing each other for
the fitness function adopted, have been designed: PSEDA-ψ1,
PSEDA-ψ2, and PSEDA-ψ3.

IV. EXPERIMENTS

The accuracy and the performances of the proposed au-
tomatic classification system have been evaluated using the
biopsies images dataset proposed in [19]. The dataset is
composed by 374 color images, each one with a resolution of
1388×1040 pixels and a depth of 32 bit. Each image represents
a lymph-nodes tissues picture acquired using a brightfield
microscope and following the method briefly described in
Section III-B. 113 images are labeled as CLL, 139 as FL, and
122 as MCL. Every image has been preprocessed using the
techniques described in Section III-B, therefore, classification
schemes are applied on the 10-dimensional numerical vectors
that describe the original images.

The PSEDA parameters settings has been chosen after
some preliminary experiments and following the same method-
ology proposed in our original paper [18]. Therefore, we have
chosen a population size of 50, and the following weights:
wu = 0.01, wx = wm = 0.09705, wp = wg = 0.39795. PSO,
as well, has been executed using the setting adopted in [3]
for other classification problems. Using the same notation of
[3]: n = 50, Tmax = 1000, vmax = 0.05, vmin = −0.05,
c1 = 2.0, c2 = 2.0, wmax = 0.9, wmin = 0.4. Both PSEDA
and PSO have been executed using the three fitness functions
described in Section III-C. Furthermore, since we have adopted
the software suite Weka (release 3.6) [7] in order to perform the
classification (and the training) task, we have compared the two
evolutionary techniques with two state-of-the-art classification
schemes: a rule-based one, i.e., ”Ripple Down Rule learner”
(Ridor) [2], and a tree-based one, i.e., ”Naive Bayes Tree”
(NBTree) [14]. In these cases, the default parameters settings
of Weka have been employed. Summarizing, we have executed
a total of 8 classification schemes: PSEDA-ψ1, PSEDA-ψ2,
PSEDA-ψ3, PSO-ψ1, PSO-ψ2, PSO-ψ3, Ridor, and NBTree.

These classification schemes have been evaluated using the
stratified 10-folds cross-validation technique repeated for 10
times. This technique is commonly considered the standard
method for classification performances evaluation [22]. It acts
by performing 10 rounds of 10-folds cross-validation. For each

round, the given dataset is randomly split in 10 equal-size and
stratified folds (that is, each fold has approximately the same
classes distribution of the entire dataset). Each classification
scheme is trained using the instances belonging to 9 of these
folds (i.e., the training set) and then evaluated on the remaining
fold (i.e., the test set). In each round, this process is repeated
for each of the 10 different combinations of training/test set.
Finally, the classification performances are averaged among the
10 training/test set combinations and the 10 cross-validation
rounds, resulting in a total of 100 executions for each classi-
fication scheme.

In Table I, for each classification scheme, the average, stan-
dard deviation, maximum and minimum percentual accuracies
are reported.

TABLE I: Experimental Results

Scheme Acc. Avg Acc. StdDev Acc. Max Acc. Min
PSEDA-ψ1 61.02 6.46 78.68 44.10
PSEDA-ψ2 50.06 7.63 68.42 32.43
PSEDA-ψ3 63.92 6.36 80.32 48.32

PSO-ψ1 56.88 6.46 75.68 42.10
PSO-ψ2 49.23 8.50 68.42 31.58
PSO-ψ3 58.82 6.36 76.32 44.74

Ridor 59.24 8.29 76.32 37.84
NBTree 60.32 8.27 78.94 40.54

These results clearly show that PSEDA-ψ3 outperforms the
other schemes. Moreover, also a statistical significance test
among PSEDA-ψ3 and the other schemes has been conducted.
The paired t-test with confidence 0.05 confirms the superiority
of PSEDA-ψ3 that is significantly better than all other schemes
except PSEDA-ψ1. By remembering that the fitness function
ψ3 is a weighted combination of ψ1 and ψ2 unbalanced toward
ψ1 (see equation (7)), it results clear why PSEDA-ψ1 is not
significantly worse than PSEDA-ψ3. It is noticeable also the
maximum accuracy achieved by PSEDA-ψ3 that is the only
one scheme able to reach the 80% of accuracy in at least a run.
Furthermore, note that the evolutionary schemes (PSEDA and
PSO) present a less accuracy standard deviation with respect
to Ridor and NBTree. This can be clearly interpreted as a sign
of robustness of the fitness functions employed.

Finally, in Figure 5, a comparison of the convergence
graphs of PSEDA-ψ3 and PSO-ψ3 is provided. The graphs are
averaged over the 100 executions performed by the 10-folds
cross-validation repeated 10 times and show the improvement
in fitness observed during the evolution. Figure 5 shows that
also on the training set, PSEDA outperforms PSO. Moreover,
although slowly in the second part of the evolution, both the
meta-heuristic continue to improve their fitness value until the
end of the evolution. This aspect can be considered as a further
indicator of the goodness of the designed fitness function.

V. CONCLUSION AND FUTURE WORK

In this paper, a system for lymphoma classification through
automatic biopsy images analysis has been proposed. The
system is composed by two main modules: a computer vision
module that elaborates the tissue biopsy images in order
to extract some numerical features, and a machine learning
module that, basing on already labeled biopsy images, builds
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Fig. 5: Convergence Graphs for PSEDA-ψ3 and PSO-ψ3

a classifier for the automatic prediction of new and unlabeled
biopsy images coming in the system.

A low number of numerical features has been considered
in order to speed-up the computational time, thus to augment
the responsiveness of the system, and to avoid the “curse of
dimensionality” issue as well.

The classification and training tasks have been performed
through the use of a recently introduced meta-heuristic tech-
nique, i.e., Particle Swarm Estimation of Distribution Algo-
rithm (PSEDA). PSEDA consists in an hybridization of PSO
and EDAs schemes and can be view as the probabilistic “alter-
ego” of PSO. The numerical space induced by the features
extraction task has been adopted as the search space for
PSEDA. Each PSEDA candidate solution is mapped to a clas-
sifier/prediction function and the quality of the classification
is evaluated by introducing three different fitness functions.

This results in the first application of PSEDA to classi-
fication problems, and in particular to images classification
problems.

A standard and publicly available dataset has been adopted
in order to test the system [19]. The experimental results
provide two main conclusions.

Firstly, a low number of image features is enough to
obtain a good accuracy level on the classification task. As a
consequence, the computational time are drastically improved
with respect to other systems that adopt a number of image
features in the order of hundreds or thousands (see for example
[19]). Moreover, the low dimensionality of the “vectorized”
images allows to avoid the “curse of dimensionality” issue that
is typical of the large majority of machine learning techniques.

Secondly, PSEDA, although originally introduced for nu-
merical optimization, can be easily adopted for the training
of a classification system. Experiments conducted show that it
outperforms both some state-of-the-art classification schemes
and, primarily, the swarm-intelligence technique from which
it derives, i.e., PSO.

As future work, we are intentioned to study some other
image features, like for example texture-based features that
have not been considered in this work. Furthermore, PSEDA,
thank to the use of different and independent probabilistic
models for each dimension of the search space, can be adopted
in hybrid discrete/continuous search spaces by simply consid-
ering discrete/continuous probabilistic models. We think that
this characteristic could be important for those classification
problems that consider also nominal and discrete attributes.
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