
A Performance Analysis of Basin Hopping

Compared to Established Metaheuristics for

Global Optimization

Marco Baioletti∗ Valentino Santucci† Marco Tomassini‡

Abstract

During the last decades many metaheuristics for global numerical opti-
mization have been proposed. Among them, Basin Hopping is very simple
and straightforward to implement, although rarely used outside its origi-
nal Physical Chemistry community. In this work, our aim is to compare
Basin Hopping, and two population variants of it, with readily available
implementations of the well known metaheuristics Differential Evolution,
Particle Swarm Optimization, and Covariance Matrix Adaptation Evolu-
tion Strategy. We perform numerical experiments using the IOH profiler
environment with the BBOB test function set and two difficult real-world
problems. The experiments were carried out in two different but com-
plementary ways: by measuring the performance under a fixed budget of
function evaluations and by considering a fixed target value. The general
conclusion is that Basin Hopping and its newly introduced population
variant are almost as good as Covariance Matrix Adaptation on the syn-
thetic benchmark functions and better than it on the two hard cluster
energy minimization problems. Thus, the proposed analyses show that
Basin Hopping can be considered a good candidate for global numerical
optimization problems along with the more established metaheuristics,
especially if one wants to obtain quick and reliable results on an unknown
problem.

Keywords: Global optimization, Metaheuristics, Basin Hopping, Algorithm
performance

1 Introduction

The goal in global function optimization is the maximization or minimization of
an arbitrary function, possibly subject to some constraints. Global optimization

∗Department of Mathematics and Computer Science, University of Perugia, Italy
†Department of Humanities and International Social Sciences, University for Foreigners of

Perugia, Italy
‡Department of Information Systems, University of Lausanne, Switzerland

1

ar
X

iv
:2

40
3.

05
87

7v
1

 [
cs

.N
E

]
 9

 M
ar

 2
02

4

problems arise very often in many fields such as natural sciences, engineering,
and machine learning among others. The problem of global minimization in-
volves finding the minimum value m of a function f within a domain χ:

min
x
{f(x) : x ∈ χ}

Typically, it is also desirable to determine the argument or the point, or set
of points, x ∈ χ that yields the minimum value m provided by the function:

argmin
x

{x ∈ χ : f(x) = m},

where x is a column vector of real-valued variables [x1, x2, . . . , xD]T ∈ χ of
dimension D and χ is a subset of RD that defines the feasible set containing
any solution x. The definition can be adapted for constrained optimization
problems with an appropriate definition of χ, and maximizing the objective
function is accomplished by replacing f(x) with −f(x). We will use the sim-
plest constraints, called box constraints, which restrict variables to belong to a
hyperrectangle defined by [a1, b1]× · · · × [ai, bi]× · · · × [aD, bD], where ai and
bi represent, respectively, the lower and upper bounds of variable xi.

Many algorithms have been devised over several decades to solve the global
optimization problem. However, most of them are limited to the restricted class
of convex functions, for which a locally optimal solution is also globally opti-
mal. However, in numerous significant scenarios, optimization problems are not
linear or convex. Rather, they are frequently non-linear, discontinuous, highly
multimodal, or even non-differentiable. Moreover, it is often the case that there
is no analytical expression for the function being optimized, and its value is
instead obtained from a measurement or simulation. This is known as a “black
box” scenario [1], which necessitates the use of algorithms that exclusively rely
on function values. In order to solve, at least approximately, this wider class of
global optimization problems new heuristic methods, often inspired by analogies
with natural phenomena, have been devised. Among the many examples, the
most well known and successful have been Evolution Strategies (ES) [2], Differ-
ential Evolution (DE) [3], Simulated Annealing (SA) [4], and Particle Swarm
Optimization (PSO) [5]. Most of these algorithms rely on populations of candi-
date solutions while others, such as Simulated Annealing, are trajectory-based.
These approaches, collectively known as metaheuristics, exhibit varying and, at
times, uncertain convergence behavior, and do not offer any assurance of global
optimality. However, they all share a crucial attribute of exploring the search
space globally, potentially enabling them to avoid local optima. Additionally,
metaheuristics are beneficial to practitioners since they do not necessitate a
comprehensive understanding of the mathematical and problem-related aspects,
making them relatively easy to comprehend and implement.

It must be said that there are also several others more mathematically rig-
orous algorithms for global optimization (see, e.g. [6, 7, 8]). However, they
require more specialized technical knowledge to be used by the non-specialist.
In spite of their importance, we shall not pursue them further here but, for the

2

interested reader, we point out a recent comparison between metaheuristics and
mathematically rigorous methods on a large benchmark function set under a
limited budget of function evaluations [9]. We also note a previous investigation
by Pham and Castellani which had similar objectives as the present study [10].
The authors compare ES, PSO, the Bees Algorithm, and Artificial Bee Colony
among them. However, they do not include Basin Hopping, DE, and Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), use a different benchmark
suite, and do not consider real-world problems.

Basin Hopping (BH) originated in computational Chemical Physics to search
for minimum energy states of atomic clusters and biological macromolecules,
e.g., [11, 12, 13] and it is still actively pursued in those fields for solving difficult
global optimization problems see, e.g., [14, 15, 16]. Over the years the algorithm
has included an increasing amount of chemical knowledge and constraints thus
becoming more specialized for use in these particular fields. However, in its
original structure and simplicity it can be used for general global function opti-
mization and it is from this point of view that we shall consider it here. Indeed,
as far as we know Basin Hopping has never been systematically compared to
other metaheuristics before and our aim is to find out how BH fares with respect
to three well known and commonly used metaheuristics: Differential Evolution,
Covariance Matrix Adaptation, and Particle Swarm Optimization. In addition,
we also propose and test a new population-based basin hopping implementation
that we call BHPOP. A preliminary version of the study has appeared in [17] but
here we extend and complete it in several ways as follows. We introduce two
new metaheuristics (CMA-ES and BHPOP) in the comparison, one of which
is new (BHPOP); we provide a fixed-target analysis besides the fixed-budget
analysis together with a new and more complete statistical analysis of the re-
sults. Finally, we add a performance analysis of two hard real-world problems.
For the comparison the recent and widely used BBOB benchmark test suite
was employed [18]. The BBOB test functions are provided in the IOH Profiler
environment [19] which is well organized and easy to use. The only previous
study we know of testing BH on a modern benchmark suite is [20]. In this paper
the author tests BH from the Python SciPy library in an algorithm portfolio
context using the same BBOB benchmark suite that we use here but, instead
of comparing different metaheuristics as we do, the author focuses on testing
several local optimizers within BH itself using only three relatively small prob-
lem dimensions. Our study is much more extensive, has different objectives
and, moreover, in order to test the set of metaheuristics under more practical
conditions, we also included in the comparison several instances of a couple of
difficult real world optimization problems. It is important to point out that our
aim is not to reach the best possible performances. Rather, we use relatively
standard off-the-shelf versions of the algorithms instead of the best versions
available and we address robustness issues, in the sense of preferring uniformly
good performances and ease of use. Our results should thus be useful to practi-
tioners wanting to tackle a new problem easily and effectively, before spending
more resources with specialized techniques.

The structure of the article is the following. The next section provides

3

a brief introduction to the various metaheuristics to be compared, including
BHPOP, our population version of BH. Sect. 3 describes the experimental setup,
including the benchmarking environment, the set of test functions, and the
results obtained. Sect. 4 gives a general discussion of the results and of their
significance, while Sect. 5 presents experimental results on real-world problems.
Finally, Sect. 6 presents our conclusions.

2 Metaheuristics

For the sake of self-containedness, in this section we briefly describe the com-
pared metaheuristics, with an emphasis on Basin Hopping, which is customar-
ily used in Chemical Physics blue but has also been effective on other types of
global optimization problems [21, 22, 7]. We also introduce BHPOP, i.e., our
own population-based variant of BH.

2.1 Basin Hopping

A synopsis of the BH algorithm (see [7] for more details) is given in pseudocode 1,
in which solutions s,x,y, z are to be considered as D-dimensional vectors.

Algorithm 1 Basin Hopping

s← initial solution
x← minimize(f, s)
while termination condition is false do

y← perturbation(x)
z← minimize(f,y)
x← acceptance test(x, z)

end while
return x, f(x)

An initial solution s is created randomly or heuristically. This solution must
lie within the basin of attraction of some local optimum, whose coordinates x can
be discovered by conducting a local search procedure (minimize) starting from
s. The algorithm then proceeds through three stages in each iteration. Firstly,
the current solution x undergoes some form of coordinate change, resulting
in a new solution y. Following that, the local minimizer finds the new local
minimum z, starting at y. There are two possible outcomes: either z differs
from x, indicating that the algorithm has successfully escaped from the basin of
attraction of x, or it is identical to x. In the latter case, the perturbation was not
enough, and y belongs to the original basin of attraction, causing the search to
rediscover the same minimum. Finally, the acceptance stage entails determining
whether the new solution z is accepted as the starting point for the subsequent
cycle. If f(z) = f(x), the search resumes by attempting another perturbation
from the starting point x. Otherwise, z is accepted unconditionally or subject
to some condition.

4

Basin Hopping accepts the new solution based on a Monte Carlo test, which
is similar to simulated annealing except that the temperature is kept con-
stant [12]. If the new solution z is better than x, it is always accepted. However,
if it is worse than x, the acceptance is based on the probability exp (−β(f(z)− f(x))),
where β is a parameter inversely proportional to a simulated temperature. In
the present work, we use the Monotonic Sequence Basin Hopping in which a
solution z is accepted if and only if f(z) < f(x) [23]. This further simplifies the
algorithm leaving a single free parameter to be set, the perturbation strength.
As is commonly done in metaheuristic approaches to global optimization, the
algorithm terminates after a fixed number of iterations or after a predetermined
computing time, or when there is no improvement in objective function value
within a certain precision during a given number of iterations. It is worth to
notice that the best solution found by BH is always a local minimum. In the
monotonic sequence version of BH it also corresponds to the current solution x.
Many other optimization algorithms are not able to guarantee this important
property.

Therefore, the effectiveness of the Basin Hopping algorithm relies on the
proper coordination of its three main elements: the local minimization proce-
dure, the perturbation technique, and the acceptance criterion. Achieving a
good synergy among these components is crucial for the search efficiency. How-
ever, the perturbation technique can be challenging to design. If the perturba-
tions are too small compared to the problem’s typical basin size, the search may
frequently return to the initial basin, leading to reduced efficiency. Conversely,
if the jumps are too extensive, the search may turn into a random walk in the
solution space, which is also an inefficient strategy. Additionally, each function
has its unique landscape, which is generally unknown unless the function space
is sampled beforehand or during the search. In this work the perturbation cor-
responds to the addition of a random vector of small magnitude to the current
solution x. Formally, given the domain intervals [aj , bj], for j = 1, . . . , D, of
the problem at hand, together with the scale factor s = 1

10 , we create a pertur-
bation vector σ ∈ RD, such that each coordinate σj is independently sampled

uniformly at random in the zero-centered interval
[
−s (bj−aj)

2 , s
(bj−aj)

2

]
, then

the perturbed solution is calculated as x + σ. We have also seen that there
are various ways of implementing the acceptance phase that impose different
intensification/diversification ratios, thus influencing speed search and its con-
vergence.

In spite of its apparent simplicity, the real core of BH is the local minimiza-
tion phase which is technically difficult if one wants to avoid numerical and
other errors. Fortunately, reliable mathematical minimization algorithms have
been developed over several decades and are now routinely available in soft-
ware libraries. Quasi-Newton methods are particularly efficient and we use a
local minimization method called “L-BFGS-B” in SciPy, an improvement of the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [24]. It is worth remark-
ing at this point that BH also works for non-continuous or non-differentiable
functions in a black-box environment. For instance, if analytical derivatives are

5

not provided, or are unknown, BFGS can approximate them with finite differ-
ences. Moreover, local search can be performed with any working minimization
algorithm, for example, the Nelder-Mead algorithm [25], Powell’s method [26],
or any other derivative-free local descent method such as one of those described
in [1].

Finally, it is perhaps useful to point out that BH can be seen as a con-
tinuous analogue of the algorithm called Iterated Local Search (ILS) (see, for
instance, [27] and references therein) which is often used for difficult combina-
torial optimization problems. Both algorithms do a walk over the local minima
of the search space but they use fundamentally different perturbations and local
optimizers. In spite of their similarity, ILS and BH seem to have been developed
at about the same time but independently of each other.

2.2 Population-based Basin Hopping

The original BH algorithm is a trajectory-based metaheuristic but there is noth-
ing in it that prevents multiple searchers to be used. We have thus implemented
a population-based BH, to which we refer with the name BHPOP.

Unknown to us, we recently realized that there existed a previous version of
Basin Hopping using a population proposed by Grosso et al. [22, 21], which they
called PBH. Our independent implementation is different from the one described
in [22, 21] in its selection and reproduction phase. It is interesting to compare
the two algorithms and, before doing so in the experimental part, we describe
both algorithms at the high level by giving their respective pseudocodes.

Algorithm 2 describes our version, namely BHPOP. At the beginning we
randomly generate a population of N points in the function domain and locally
minimize their function values. Then the algorithms enters a loop where, at
each iteration, a solution from the current population is randomly chosen with
a probability proportional to its fitness with the standard roulette wheel method
and subjected to perturbation and to a local minimization phase. If the new
minimum z is better than the worst element in the current population, z enters
the population replacing it. The loop is executed until a termination condition
is met.

It is interesting to notice that this algorithm adopts the (λ+1) evolutionary
scheme, where λ = N . In fact, at each iteration, one new point is generated (by
perturbation and local minimization) and kept in the population if and only if
it is better than the worst solution in the current population.

This scheme is extended in two ways. First, when the minimum z enters
the population, the point x used in the next iteration will be exactly z. The
other improvement is to use a form of restart in order to prevent stagnation
and premature convergence. At each iteration, the algorithm checks whether all
the solutions in the population have the same function value. If this condition
is met, then 2/3 of the solutions in the population are re-initialized, i.e., they
are replaced by randomly generated solutions in the function domain, which
are subjected to the local search procedure. Finally, it is interesting to note

6

Algorithm 2 Population-Based Basin Hopping

randomly initialize the N solutions {x}N1 in the population P
locally minimize all the solutions {x}N1 in P
set xworst to the point with the maximum function value found
while termination condition is false do

choose x in P with the fitness-proportionate method
y← perturb(x)
z← minimize(f(y))
if f(z) < f(xworst) then

delete xworst from P
insert z in P
find the new xworst

end if
end while
return xbest and f(xbest)

that, for N = 1, BHPOP reduces to the standard BH described in the previous
section.

For the sake of comparison, the pseudocode provided in Algorithm 3 de-
scribes the population-based approach introduced by Grosso et al. in [22] and
named PBH. The distance d mentioned in pseudocode is a kind of parameter of
the algorithm and, in [22], is defined as d(x, y) = |f(x) − f(y)| for the case of
general benchmark functions (this is also the definition we used in our imple-
mentation of PBH). Note that the pseudocode here reported is simplified with
respect to the original code present in [22] because the parameter dcut is set to
∞, as suggested by the authors.

Algorithm 3 PBH by Grosso et al.

randomly initialize the N solutions {x}N1 in the population P
locally minimize all the solutions {x}N1 in P
while termination condition is false do

for i← 1 to N do
yi ← perturb(xi)
zi ← minimize(f(yi))

end for
for i← 1 to N do

j ← argmink d(xk, zi)
if f(zi) < f(xj) then

replace xj with zi in P
end if

end for
end while
return xbest and f(xbest)

7

The main difference with respect to BHPOP consists in the way the pop-
ulation is managed: PBH uses a generational approach, while BHPOP uses a
steady-state mechanism. The other difference is that BHPOP has a completely
elitist behaviour, by maintaining at every iteration the best N individuals so far,
while this is not case in PBH, where diversity is ensured by making individuals
compete only with those that are locally close. Instead, in order to maintain
diversity in the individuals pool, BHPOP relies on the restart mechanism, as
described above.

2.3 Differential Evolution

Differential Evolution (DE) was proposed by Storn and Price [3] as a population-
based metaheuristic for optimizing functions. In DE, each individual in the
population, denoted by x, is subjected to a variation process that involves the
recombination of three randomly selected and distinct individuals, namely a, b,
and c. This variation results in the creation of a new solution, denoted by z,
according to the equation z = a + F · (b − c), where F is a weight parameter
commonly selected from the interval (0, 2]. A random direction j is then chosen
in the D-dimensional space, and a new candidate individual, denoted by x′, is
formed through the use of binomial crossover between x and z, with a probability
of crossover pcr.

x′
i =

{
zi if i = j or with probability pcr,
xi otherwise

(1)

Finally, assuming function minimization, the new solution x′ replaces x if f(x′) ≤
f(x).

Algorithm 4 Differential Evolution

initialize the individuals in the population P at random
while termination condition is false do

for each individual x ∈ P do
select at random three different individuals a,b,c ̸= x
combine a,b, and c to produce z
produce candidate solution x

′
by crossover between x and z

if f(x′) ≤ f(x) then
replace x with x′ in P

else
keep solution x in P

end if
end for

end while
return best solution

Algorithm 4 describes the basic DE. There exist more advanced versions
which differ in the intermediate design of z or the crossover, and some hybrids
also incorporate local search.

8

2.4 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) derives from
Evolution Strategies but it is a more modern and complex method than the
original versions of ES. CMA-ES evolves the mean value and the covariance
matrix of a multivariate Gaussian distribution p(x) used to draw new solutions
in the search space:

p(x) =

√
detC−1

(2π)l
exp

(
−1

2
(x− x̄)TC−1(x− x̄)

)
,

where x̄ is the mean and C = (cij) is the covariance matrix of p(x). In this
matrix, the cii are the variances σ2

i and the off-diagonal elements cij , with
i ̸= j, represent the covariances. The D variances and D(D − 1)/2 covariances
(the matrix is symmetric) needed for parameter evolution are drawn from this
general distribution. It is succinctly written as X ∼ N (x̄,C). In CMA-ES a
global step size is determined for all parameters and a new vector is obtained
by mutation. After generating and evaluating an offspring population of size
λ, obtained by mutation, the µ best best individuals among the offspring are
selected and undergo weighted recombination which implements a multi-parent
arithmetic crossover operator, while a more computationally expensive proce-
dure is required to update the covariance matrix. There are a few slightly
different versions of CMA-ES in use and the details, which are highly technical,
would require a long discussion which cannot be afforded here. For this reason,
instead of giving the pseudocode for a particular version, we prefer to refer the
reader to specialised literature for a more complete description [28, 2]. Arguably,
CMA-ES is the most sophisticated among the metaheuristics described herein.
In this work we have used the version provided by the Nevergrad library (see
Section 3.1 below).

2.5 Particle Swarm Optimization

Eberhart and Kennedy [5] proposed a method for optimization called Particle
Swarm Optimization, which is inspired by animal behavior such as flocks of birds
or swarms of insects. The aim of this approach is to simultaneously explore a
problem search space by means of a number of “particles” with the goal of
finding the globally optimum configuration. Here we describe the basic version
of the algorithm. PSO works with a population in which each particle i, with
function value f(xi), corresponds to a possible solution to the problem. The
particles move according to their velocities vi within the specified continuous
search space. At each iteration xbest

i (t) and B(t) are computed and updated;
xbest
i (t) is the best fitness point visited by particle i since the beginning of the

search; B(t) is the best function value found within the entire population up to
time step t and is called global-best.

The PSO algorithm incorporates three factors to determine the particles’
movement. Firstly, the inertia term maintains the particles on their current

9

path. Secondly, the particles are drawn towards the global best, B(t). And
lastly, they are also attracted to their particle-best fitness point, xbest

i (t). The
particle’s motion from iteration i to i+1 is given by the following equations for
the particle’s new velocity vi(t+ 1) and new position xi(t+ 1):

vi(t+ 1) = ωvi(t) + c1r1(t+ 1)[xbest
i (t)− xi(t)]

+ c2r2(t+ 1)[B(t)− xi(t)]

xi(t+ 1) = xi(t) + vi(t+ 1)

where ω, c1 and c2 are scalar parameters to be specified, and r1 and r2 are
uniform random variables in the interval [0, 1]. During the initialization phase of
the algorithm, the particles are uniformly distributed across the search domain
and are assigned zero initial velocity. The algorithm then enters a loop that
continues until a specific termination condition is met. During each iteration,
N candidate solutions are produced, one for each particle, and the collection
of these solutions is utilized to construct the succeeding generation using the
dynamical update equations mentioned earlier. Here, as in the case of DE, the
algorithm described is a bare-bones PSO. Many variants exists but we cannot
go into details.

3 Experimental Setup

In order to compare the effectiveness of the previously described algorithms,
we conducted a series of experiments. Their setup is detailed hereafter: Sec-
tion 3.1 describes the implementations adopted and the parameter settings for
the considered algorithms, Section 3.2 describes the benchmark suite on which
the experiment was carried out, while Section 3.3 provides a description of how
the experiment was designed.

3.1 Implementations of the algorithms

The six metaheuristics described in Section 2 were considered, namely: BH and
its two population-based variants BHPOP and PBH, DE, PSO, and CMA-ES.

As widely known, any of these algorithms has been proposed in a myriad
of variants. In this experiment we intended to provide a comparison of out-of-
the-box implementations of the mentioned metaheuristics. Therefore, with this
aim, we selected the recently proposed Nevergrad software library [29] and we
considered the standard implementations and parametrizations of DE, PSO and
CMA-ES as provided by the following Nevergrad classes: DE, RealSpacePSO,
and CMA.

For the sake of completeness, we provide the out-of-the-box parametrization
adopted in Nevergrad. DE: the crossover probability is set to pcr = 0.5, the
scale factor is set to F = 0.8, the mutation operator is “curr-to-best”, and the
population size is set to 30. PSO: the inertia, cognitive and social weights are
set to, respectively, ω = 1

2 log(2) , c1 = c2 = 0.5 + log(2), while the population

10

size is set to 40. CMA-ES: the sample size is set to D2/2 +D/2 + 3, while the
other settings are as described in [28] and [2].

Since Basin Hopping is not in the collection of Nevergrad’s algorithms, we
implemented it by considering the local minimizer called L-BFGS-B [24] as pro-
vided in the widely adopted SciPy software library [30] (in the function called
fmin l bfgs b). In order not to break the black-box assumption, L-BFGS-B
is run without providing the gradient function, which L-BFGS-B internally ap-
proximates by means of the finite differences technique (as implemented in
SciPy). This approximation costs additional objective function evaluations
which are accounted for in the budget of evaluations allowed for any BH ex-
ecution. Furthermore, BH adopts the standard sharp acceptance criterion and
a random perturbation strength sampled from the interval centered in the origin
and whose length is 1

10 of the feasible region range in any dimension1.
BHPOP is built on the basis of BH and its only extra parameter is the

population size which has been set, on the basis of the problem dimension D,
to max{10, D}. PBH is implemented by faithfully following the description
found in [22] and, for the sake of fairness, we adopted the same population
size and local optimizer as used in BHPOP. Moreover, in order to have a good
initial diversity of the population, the initialization is performed by using a high
discrepancy generator of vectors. In particular, we adopted the implementation
of the Scrambled Hammersley technique [31] available in the Nevergrad library.

Finally, all the considered algorithms adopt the clipping technique whenever
a generated solution violates its box constraint. In other words, when modifying
the coordinates of a solution generates a point that falls outside the allowed
coordinate range for some coordinates, the point is brought back into the interval
by changing the corresponding coordinates to their maximum or minimum value.

3.2 Benchmark functions

To put benchmarking practices into perspective it is useful to remember that
it has been proved that the performance of any black box optimization method
when it is averaged over all possible discrete functions is the same, as stated in
the no free lunch theorems (NFLT) [32]. In the continuous case a similar result
also holds (see e.g. [33]). As a consequence, the comparison of two algorithms on
a given function set of necessarily limited size, would seem worthless. In fact,
even if algorithm A1 is more efficient on the functions of the set, among the
possible problems, according to the NFLT, there always exist other functions
on which algorithm A2 is superior. However, among the possible functions
many are random and do not appear in real problems. Thus, it is still useful
to benchmark an algorithm on a test set which contains functions that are
representative of problems that do appear in real-world applications. In any
case, it remains true that results cannot be generalized to other functions that
do not belong to the tested set.

1As described in Section 3.2, the considered search space domain is [−5,+5]D, therefore
the perturbation domain of BH, blue BHPOP and PBH is [−0.5,+0.5]D.

11

With this in mind, to compare the performances of the algorithms described
in the previous section in a meaningful way, we selected the widely known real-
parameter optimization benchmark suite called BBOB [18]. In particular, we
have used the software implementation of BBOB provided in the widespread
testing environment IOH Profiler [19].

The BBOB benchmark test suite contains 24 scalable real and single objec-
tive test functions which are described in detail in the report [18]. The aim
in designing the benchmark was to expose most of the typical difficulties en-
countered in optimization practice. The function features that were considered
important are separability, conditioning, multi-modality, and deception and the
set contains several functions of each of these kinds. Various transformations,
including random shifting of the global optimum, as well as linear and non-linear
transformations of the search space were used to generate the desired features.

The functions {f1, f2, . . . , f24} are divided into five groups, each one rep-
resentative of the corresponding function feature: separable functions (f1 to
f5), functions with low or moderate conditioning (f6 to f9), unimodal functions
with high conditioning (f10 to f14), multi-modal functions with adequate global
structure (f15 to f19), and multi-modal functions with weak global structure
(f20 to f24).

The global minima are sought in the search domain defined by the closed
compact [−5,+5]D, where D is the search space dimension which can be set to
any positive integer D ≥ 2. In the following, we will use the term “problem” to
refer to a function/dimension pair.

A BBOB problem relies on a basic benchmark function (such as, just to name
a few, the well known Rosenbrock, Rastrigin and Schwefel functions) and it may
be instantiated in a virtually infinite number of instances by applying linear
and non-linear transformations both in the search and the objective spaces.
Therefore, different instances of the same problem may have different global
minima. The IOH Profiler environment allows to track both the transformed
and untransformed objective values, together with the difference with respect
to the known global minimum. This is useful in order to correctly aggregate the
results over multiple instances, multiple functions, or multiple problems.

3.3 Design of the experiments

The performances of the algorithms have been compared on the suite of 24
benchmark functions described in the previous section.

Four dimensions D are considered as D ∈ {5, 10, 20, 40}, thus our bench-
mark suite is formed by a total of 24 × 4 = 96 problems. Moreover, for each
benchmark problem, 15 different instances were generated. Each algorithm has
been executed 15 times per instance, thus the number of executions of a given
algorithm on a given problem is 15× 15 = 225. Overall, by considering all the
algorithms and the entire benchmark suite with all the dimensions, our experi-
ment consisted in 6× 24× 4× 225 = 129 600 executions. This large number of
executions allows to perform a solid statistical validation of the results.

12

Any single execution terminates when either a predefined budget of evalua-
tions cap is exhausted or when the difference between the best-so-far value and
the known global minimum value is less or equal to a predefined precision error
err . We considered the settings cap = 200 000 and err = 10−8 which are some-
how standard in the literature and, since IOH Profiler records the trajectory of
the best-so-far value in any single execution, they are large/small enough to al-
low analyses with smaller evaluation budgets or larger precision errors. Finally,
note that, in order to allow a fair comparison, all the recorded errors smaller
than err are clipped to err .

4 Experimental Results

The trajectories recorded by IOH Profiler for all the algorithms in all the bench-
mark problems are analyzed under two different perspectives: in the fixed budget
analysis we investigate how effective are the best objective values obtained by
the algorithms within a given amount of evaluations, while in the fixed target
analysis the emphasis is on the number of evaluations required to reach a given
target objective value.

4.1 Preliminary comparison between BHPOP and PBH

Before proceeding with the full scale experiments, because of the similarity
between BHPOP and PBH, we wished to compare their performances on the
benchmark suite.

For that purpose, we provide in Table 1 an experimental comparison be-
tween our BHPOP and PBH. For each dimension D ∈ {5, 10, 20, 40} and for
each function group as described in Section 3.2, the table shows the results of
the comparison using the notation “x/y/z” with the following meaning: x is
the number of functions where BHPOP significantly outperformed PBH, y is
the number of functions where no significant difference is observed, z is the
number of functions where BHPOP is significantly outperformed by PBH. The
significance is calculated according to the Mann Whitney U test [34] with a
significance level of α = 0.05. The “Overall” line provides a summary of the
same data throughout the entire benchmark suite, while the Wilcoxon test [34]
was run using the median results obtained for each benchmark function.

Table 1 shows that BHPOP performs slightly better than PBH. Overall,
out of 96 function/dimension pairs, there are 35 successes for BHPOP, 56 ties,
and only 5 successes for PBH. Furthermore, PBH does not exhibit a significant
advantage over BHPOP in any of the larger benchmark functions (D = 20, 40).

Based on these results, we will only consider BHPOP as population-based
variant of BH in the following experimental comparisons.

13

Function Group D = 5 D = 10 D = 20 D = 40

Separable 1/4/0 2/3/0 2/3/0 1/4/0
Low. Cond. 1/3/0 1/3/0 1/3/0 1/3/0
High Cond. 1/4/0 1/2/2 1/4/0 0/5/0
Global Structure 5/0/0 5/0/0 4/1/0 1/4/0
Weak Structure 1/1/3 1/4/0 3/2/0 2/3/0

Overall 9/12/3 10/12/2 11/13/0 5/19/0
Wilcoxon p-value 0.811 0.005 0.016 0.106

Table 1: Comparison between BHPOP and PBH. For each dimension (columns)
and function group (rows), the notation “x/y/z” means: BHPOP significantly
outperformed PBH in x functions, BHPOP and PBH have no significant differ-
ence in y functions, BHPOP is significantly outperformed by PBH in z functions.
The significance is according to the Mann Whitney U test [34] with a signifi-
cance level of α = 0.05. The “Overall” line provides a summary of the same
data throughout the entire benchmark suite, while the Wilcoxon test [34] was
run using the median results obtained for each benchmark function.

4.2 Fixed Budget Analysis

In order to carry out a fair comparison and aggregation of the results among
different instances and different problems, the error value v produced by each
execution (within a given budget of evaluations) is transformed to the logscore
measure defined as logscore(v) = log (v/best), where best is the best error ob-
served in all the executions of every algorithm in the same problem instance
(within a given budget of evaluations). The logscores allow for a relative com-
parison among the algorithms considered in the experiment. Moreover, they can
be averaged across multiple instances and problems. The ideal average logscore
of 0 is obtained by an algorithm which reached the best objective value in all its
executions, while the value increases for less effective and less robust algorithms.
Therefore, throughout this section, we will use logscores and average logscores
in order to compare the algorithms.

For each dimension D ∈ {5, 10, 20, 40}, Figure 1 shows a boxplot graph
which is formed by five groups – one for each group of benchmark functions (see
Section 3.2) – and each group contains a box for each compared algorithm. The
box reflects the distribution of the logscores obtained after 200 000 evaluations
by an algorithm in all its executions related to the considered group of functions
with the considered dimension.

Figure 1 can be commented as follows:

• regarding the “BHPOP vs BH” comparison, it looks that the population
of BHPOP, which allows more “diverse” attempts of the Basin Hopping
search, makes the algorithm more robust (see e.g. the BHPOP and BH
boxes in low conditioned functions) and more effective when the landscape
is formed by multiple basins of attractions without a regular structure (see

14

the BHPOP and BH boxes in the last group of functions);

• when D = 5, BHPOP and BH are clearly more effective than the com-
petitors in all function groups except for the group of highly conditioned
functions (f10 – f14), where CMA-ES obtained better results;

• CMA-ES starts to outperform the other algorithms from dimension D =
10 but, notably, BHPOP is competitive with (and sometimes better than)
CMA-ES on the supposedly most difficult functions group, i.e. the multi-
modal functions with weak global structure (f20 – f24);

• PSO and DE are, in general, less effective than the other algorithms,
though being competitive in the multi-modal functions with adequate
global structure (f15 – f19).

For the sake of completeness, Table 2 provides the average logscores obtained
– after 200 000 evaluations – by each algorithm in all the considered problems,
together with the indications of a statistical analysis performed by considering
BHPOP as reference algorithm. In fact, the average logscores of BH, DE, PSO
and CMA-ES are marked with ▲ or ▽ when BHPOP is, respectively, significantly
better or significantly worse, according to the Mann Whitney U test [34] and
a significance level of α = 0.05. The last line of the table shows the average
logscores, aggregated over all the problems with the same dimension. In this
case, the statistical indications are provided according to the Wilcoxon test [34]
carried out on the 24 paired average logscores.

Table 2 confirms the general comments made before, but allows to derive
indications about the statistical significance and more detailed observations as
follows. Averaging across all the considered benchmark problems, there is only
one comparison where BHPOP is significantly worse than a competitor algo-
rithm, i.e. with respect to CMA-ES in the 40-dimensional problems. Neverthe-
less, there are six 40-dimensional functions (namely: f8, f9, f13, f20, f21 and
f22) where BHPOP obtains significantly better results than CMA-ES. Regard-
ing the comparison “BHPOP vs BH”, there are several cases where the basic
BH is better than its population-based variant. Anyway, when that happens,
the logscores of BH are slightly better than those of BHPOP while, conversely,
when BHPOP outperforms BH, its logscores are largely better (see e.g. the
results for f21 and f22). Finally, as seen before, PSO and DE look competitive
in the fourth group of functions (f15 – f19).

In order to have synthetic global indications, we also carried out a statisti-
cal analysis on the average logscores obtained by the five algorithms in all the
4 × 24 = 96 problems, within the maximum allowed budget of 200 000 eval-
uations. The omnibus Friedman test [34] rejects the equivalence of effective-
ness among the five algorithms with a p-value smaller than 10−11. Therefore,
a Conover post-hoc test has been carried out by considering the Benjamini-
Hochberg adjustment scheme in order to mitigate the statistical family-wise
error rate [35]. The results of all the pairwise comparisons are provided in the
heatmap of Figure 2. The entries are greenish or reddish when the row-algorithm

15

D
=

5
D

=
1
0

D
=

2
0

D
=

4
0

F
u
n
c
ti
o
n

B
H
P
O
P

B
H

D
E

P
S
O

C
M

A
-E

S
B
H
P
O
P

B
H

D
E

P
S
O

C
M

A
-E

S
B
H
P
O
P

B
H

D
E

P
S
O

C
M

A
-E

S
B
H
P
O
P

B
H

D
E

P
S
O

C
M

A
-E

S

f 1
0
.0
0

0
.0
0

3.
1
1
▲

0
.0
0

0
.0
0

0
.0
0

0
.0
0

12
.7
3
▲

0
.0
0

0
.0
0

0
.0
0

0
.0
0

18
.1
7
▲

0
.0
0

0
.0
0

0
.0
0

0
.0
0

20
.5
5
▲

0.
03

0
.0
0

f 2
0
.0
0

0
.0
0

4.
5
2
▲

0
.0
0

0
.0
0

4.
95

4.
88

14
.4
2
▲

0
.0
0
▽

0
.0
0
▽

10
.7
7

10
.6
6

19
.4
1
▲

0
.0
0
▽

0
.0
0
▽

1
2.
18

1
2.
38

2
1.
3
8
▲

0.
05

▽
0
.0
0
▽

f 3
6
.6
6

10
.1
6
▲

9
.7
0
▲

1
6.
04

▲
2
0
.4
3
▲

1.
79

1.
88

1
.3
9
▽

2.
35

▲
2.
65

▲
1.
39

0.
94

▽
0
.6
5
▽

1
.3
2
▽

0.
86

▽
1.
90

1.
34

▽
0
.4
8
▽

1
.4
7
▽

0
.4
0
▽

f 4
16
.1
9

16
.6
3

1
5
.3
4
▽

1
8
.4
9
▲

20
.0
2
▲

1.
35

1.
40

0
.7
1
▽

1.
56

▲
1.
86

▲
1.
81

1.
40

▽
0
.5
4
▽

1
.5
1
▽

1.
05

▽
2.
57

1
.7
7
▽

0
.5
0
▽

1.
66

▽
0
.5
3
▽

f 5
0
.0
0

0
.0
0

4
.8
4
▲

1
9.
24

▲
0
.0
0

0
.0
0

0
.0
0

16
.3
7
▲

20
.8
7
▲

0
.0
0

0
.0
0

0
.0
0

20
.1
9
▲

22
.2
5
▲

0
.0
0

0
.0
0

0
.0
0

21
.5
1
▲

2
3.
42

▲
0
.0
0

f 6
0.
8
9

0
.7
5

1
6.
38

▲
0
.0
0
▽

0
.0
0
▽

5.
43

5.
26

20
.1
2
▲

0.
77

▽
0
.0
0
▽

8.
25

7.
89

▽
22
.1
9
▲

16
.7
4
▲

0
.0
0
▽

9.
40

9.
20

23
.5
3
▲

2
3.
44

▲
0
.0
0
▽

f 7
14
.4
5

1
5.
4
1
▲

5
.1
4
▽

13
.8
7
▽

1
4.
17

▽
13
.1
0

13
.3
8
▲

1
2
.9
9

14
.5
5
▲

13
.0
5
▽

1.
51

1.
79

▲
2.
18

▲
2
.7
9
▲

1
.2
5
▽

2.
35

2.
34

2
.2
0
▽

3.
08

▲
0
.8
1
▽

f 8
0
.0
0

0.
6
2
▲

1
7.
9
6
▲

3.
11

▲
1
.2
3
▲

0
.0
0

2.
73

▲
20
.3
9
▲

6.
38

▲
1.
94

▲
0
.0
9

2.
63

▲
21
.9
3
▲

11
.8
7
▲

1.
76

0
.6
6

2.
48

23
.3
9
▲

1
8.
66

▲
1
.7
6
▲

f 9
0
.0
0

0
.0
0

1
8.
1
9
▲

7.
03

▲
0
.3
5
▲

0
.0
0

0.
09

20
.3
7
▲

15
.3
9
▲

0.
53

▲
0
.0
4

3.
74

▲
21
.6
2
▲

17
.8
6
▲

0.
70

0
.4
6

3.
66

▲
22
.8
3
▲

2
1.
80

▲
0
.8
8
▲

f 1
0

0.
6
8

0.
7
4

18
.5
0
▲

1
9.
52

▲
0
.0
0
▽

6.
17

6.
09

22
.8
7
▲

22
.6
8
▲

0
.0
0
▽

11
.0
6

10
.7
7
▽

26
.0
9
▲

25
.8
2
▲

0
.0
0
▽

1
2.
36

1
2.
32

2
7.
5
1
▲

2
8.
57

▲
0
.0
0
▽

f 1
1

3.
97

4
.0
4

18
.2
7
▲

17
.5
9
▲

0
.0
0
▽

6.
88

6.
82

20
.0
2
▲

19
.8
1
▲

0
.0
0
▽

8.
17

8.
01

▽
21
.9
2
▲

21
.5
0
▲

0
.0
0
▽

1
0.
01

8.
65

▽
23
.1
0
▲

2
2.
70

▲
0
.0
0
▽

f 1
2

0.
68

0.
6
9

17
.9
1
▲

19
.1
3
▲

0
.0
0
▽

1.
91

1.
92

18
.2
2
▲

18
.9
0
▲

0
.0
0
▽

2.
95

2.
75

20
.0
4
▲

19
.0
6
▲

0
.0
0
▽

4.
04

3.
02

▽
2
1.
64

▲
19
.5
2
▲

0
.0
0
▽

f 1
3

5.
76

5
.8
9

1
4.
77

▲
1
9
.3
1
▲

0
.0
1
▽

7.
18

7.
00

19
.9
1
▲

19
.6
8
▲

1
.2
3
▽

6.
90

6
.1
3
▽

19
.9
7
▲

1
7.
6
0
▲

1
1.
28

▲
5.
33

3
.0
6
▽

1
6.
55

▲
12
.7
9
▲

1
0.
98

▲
f 1

4
1
.7
4

1.
7
3

9.
00

▲
5
.9
9
▲

0
.0
0
▽

4.
74

4.
72

14
.4
1
▲

7.
16

▲
0
.0
0
▽

7.
08

7.
09

18
.7
2
▲

8.
85

▲
0
.0
0
▽

7.
94

7
.9
2

2
0.
59

▲
10
.4
0
▲

0
.0
0
▽

f 1
5

0.
1
4

0
.1
2

17
.4
6
▲

1
9.
35

▲
2
0
.1
2
▲

15
.7
7

1
4
.0
0
▽

19
.8
2
▲

20
.0
5
▲

19
.8
2
▲

1.
77

0
.6
7
▽

2.
58

▲
2
.2
7
▲

1.
53

▽
1.
98

1
.2
0
▽

1.
9
0
▽

1.
76

▽
0
.4
7
▽

f 1
6

17
.3
7

17
.7
2
▲

14
.6
1
▽

14
.7
1
▽

1
3
.4
8
▽

9.
56

9.
63

8.
98

▽
8.
22

▽
5
.9
1
▽

5.
86

5.
76

5.
49

▽
4
.5
9
▽

1
.8
4
▽

5.
41

5.
32

▽
5
.0
7
▽

4.
49

▽
1
.1
4
▽

f 1
7

15
.3
5

15
.5
3

2
.3
8
▽

13
.2
1
▽

1
5.
02

6.
80

7.
40

▲
5.
74

▽
6.
69

4
.4
2
▽

7.
10

6.
63

▽
6.
38

▽
6
.3
7
▽

2
.9
1
▽

6.
56

6.
19

▽
5
.7
9
▽

5.
80

▽
1
.7
9
▽

f 1
8

17
.1
8

17
.5
3
▲

7
.4
1
▽

16
.3
8
▽

16
.9
6

5.
66

5.
97

▲
4.
27

▽
5.
03

▽
3
.3
7
▽

5.
69

5.
14

▽
4.
62

▽
4
.5
8
▽

1
.9
4
▽

5.
92

5.
73

▽
5
.0
1
▽

4.
96

▽
1
.6
5
▽

f 1
9

5
.6
2

5
.1
4

14
.9
4
▲

15
.4
5
▲

15
.8
8
▲

1.
60

0
.9
3
▽

4.
46

▲
3.
46

▲
3.
27

▲
3.
94

4.
09

▲
2.
92

▽
1
.7
4
▽

1
.4
4
▽

3.
7
2

4.
35

▲
2
.8
0
▽

2.
04

▽
0
.9
2
▽

f 2
0

1
6.
8
4

1
6.
71

▽
1
0
.3
2
▽

1
6.
14

▽
1
8
.8
5
▲

2.
40

2.
62

▲
1
.9
2
▽

3.
21

▲
3.
64

▲
0.
43

0
.3
9
▽

0.
70

▲
0
.7
6
▲

1.
00

▲
0.
2
4

0
.2
0
▽

0
.5
7
▲

0.
23

0
.4
4
▲

f 2
1

11
.5
1

17
.0
5
▲

9
.5
5

14
.0
9
▲

16
.5
2
▲

1
3
.2
0

19
.6
5
▲

17
.8
1
▲

17
.8
5
▲

16
.4
3
▲

8
.9
2

20
.1
4
▲

20
.0
2
▲

17
.5
3
▲

1
6.
69

▲
8
.2
1

1
9.
85

▲
20
.7
0
▲

1
6.
73

▲
14
.8
5
▲

f 2
2

9
.5
8

15
.4
1
▲

13
.0
6
▲

1
4.
09

▲
1
6
.6
2
▲

1
5
.0
4

20
.4
8
▲

18
.9
3
▲

17
.6
1
▲

19
.9
6
▲

1
0
.8
3

14
.4
4
▲

14
.4
1
▲

13
.6
4
▲

1
4.
10

▲
3
.7
7

5
.8
9
▲

6.
7
9
▲

5
.5
1
▲

5
.5
8
▲

f 2
3

1
3.
0
5

1
3.
06

1
4.
0
2
▲

1
2.
95

1
1
.3
4

2.
30

2.
25

2.
89

▲
2
.0
4
▽

2.
52

▲
2.
84

2.
86

3.
35

▲
2
.7
2

3.
05

▲
3.
88

3.
88

4.
17

▲
3.
76

3
.5
5
▽

f 2
4

1
0
.5
6

10
.6
6

14
.0
0
▲

1
4.
14

▲
1
4
.3
6
▲

2.
18

1
.8
8
▽

3.
83

▲
3.
52

▲
3.
32

▲
1.
80

0
.9
2
▽

2.
54

▲
2
.0
3
▲

1.
65

▽
1.
79

1.
10

▽
1
.8
6
▲

1.
47

▽
0
.7
1
▽

O
v
e
ra

ll
7
.0
1

7
.7
3
▲

12
.1
4
▲

1
2.
91

▲
8.
9
7

5.
33

5.
87

12
.6
5
▲

9.
91

▲
4
.3
3

4.
55

5.
20

12
.3
6
▲

9
.3
1
▲

2
.6
3

4.
6
1

5.
08

12
.5
2
▲

9.
76

1
.9
4
▽

T
ab

le
2:

A
ve
ra
ge

lo
gs
co
re
s
ob

ta
in
ed

b
y

th
e
fi
ve

a
lg
o
ri
th
m
s
in

a
ll

th
e
in
ve
st
ig
a
te
d

b
en
ch
m
a
rk

fu
n
ct
io
n
s
a
n
d

d
im

en
si
o
n
s,

co
n
si
d
er
in
g
a
b
u
d
ge
t
of

20
0
00
0
ev
al
u
at
io
n
s.

B
es
t
re
su
lt
s
p
er

p
ro
b
le
m

a
re

d
en
o
te
d
in

b
o
ld
fa
ce
.
T
h
e
lo
g
sc
o
re
s
m
a
rk
ed

w
it
h
▲

an
d
▽

ar
e,

re
sp
ec
ti
ve
ly
,
si
gn

ifi
ca
n
tl
y
w
or
se

or
b
et
te
r
th
a
n
th
e
lo
g
sc
o
re

o
b
ta
in
ed

b
y
B
H
P
O
P
,
a
cc
o
rd
in
g
to

th
e
M
a
n
n
W

h
it
n
ey

U
te
st

w
it
h
α
=

0
.0
5.

T
h
e
la
st

ro
w

o
f
th
e
ta
b
le

co
n
ta
in
s
th
e
m
a
cr
o
-a
ve
ra
g
ed

lo
g
sc
o
re
s
w
h
ic
h
a
re

m
a
rk
ed

a
s
b
ef
o
re
,
a
cc
o
rd
in
g

to
th
e
W

il
co
x
on

te
st
.
H
or
iz
on

ta
l
li
n
es

ar
e
u
se
d
to

g
ro
u
p
th
e
fu
n
ct
io
n
s
w
it
h
si
m
il
a
r
ch
a
ra
ct
er
is
ti
cs
,
a
s
d
es
cr
ib
ed

in
S
ec
ti
o
n
3
.2
.

16

Separable
Low Cond.

High Cond.

Global structure

Weak structure

0

5

10

15

20

25

30
Lo

gS
co

re
D = 5

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

Separable
Low Cond.

High Cond.

Global structure

Weak structure

D = 10
Algorithms

BHPOP
BH
DE
PSO
CMA-ES

Separable
Low Cond.

High Cond.

Global structure

Weak structure

0

5

10

15

20

25

30

Lo
gS

co
re

D = 20
Algorithms

BHPOP
BH
DE
PSO
CMA-ES

Separable
Low Cond.

High Cond.

Global structure

Weak structure

D = 40
Algorithms

BHPOP
BH
DE
PSO
CMA-ES

Figure 1: Boxplots of the logscores obtained by the five algorithms, grouped
by dimension D ∈ {5, 10, 20, 40} and benchmark function group, considering a
budget of 200 000 evaluations.

is, respectively, better or worse than the column-algorithm. The grades of green
or red are set on the basis of the adjusted Conover p-values, which are also
provided in the entries.

17

BHPOP BH DE PSO CMA-ES

BH
PO

P
BH

DE
PS

O
CM

A-
ES

1 0.49 2.8e-05 0.0072 0.012

0.49 1 0.00039 0.038 0.0019

2.8e-05 0.00039 1 0.11 4.3e-11

0.0072 0.038 0.11 1 3.3e-07

0.012 0.0019 4.3e-11 3.3e-07 1

Figure 2: Heatmap showing all the pairwise comparisons among the five al-
gorithms in all the 4 × 24 = 96 problems, considering a budget of 200 000
evaluations. The entries are greenish or reddish when the row-algorithm is,
respectively, better or worse than the column-algorithm. The grade of green
or red is set on the basis of the p-value computed according to the Conover
post-hoc test with Benjamini-Hochberg adjustment. These p-values are also
provided in the heatmap. The omnibus Friedman test rejected the equivalence
of effectiveness among the five algorithms with a p-value smaller than 10−11.

Figure 2 shows that a standing of the algorithms may be divided in three
bands: CMA-ES in the first band,BHPOP and BH in the second band, and PSO
and DE in the third band. In fact, the more sophisticated scheme of CMA-ES
is significantly more effective than the competitors, at least with the considered
budget of evaluations. However, the p-values of the comparisons “CMA-ES vs
BHPOP” and “CMA-ES vs BH” are several orders of magnitude larger than
those of the comparisons “CMA-ES vs PSO” and “CMA-ES vs DE”.

Finally, the effectiveness of the algorithms has been compared also by con-
sidering lower budgets of evaluations. In Figure 3 we provide the boxplots of the
logscores obtained by the algorithms over the entire benchmark suite consider-
ing five different budgets of evaluations as follows: 1000, 10 000, 50 000, 100 000
and 200 000.

18

1 000 10 000 50 000 100 000 200 000
Budgets of evaluations

0

5

10

15

20

25

30
Lo

gS
co

re
Algorithms

BHPOP
BH
DE
PSO
CMA-ES

Figure 3: Boxplots of the logscores obtained by the five algorithms in all the
executions over all the problem instances, considering different budgets of eval-
uations.

Interestingly, Figure 3 shows that, with a very low budget of 1000 evalua-
tions, BHPOP and BH are more robust and effective than the other competitors,
while the previously made observations seems to be valid for budgets larger or
equal to 10 000.

4.3 Fixed Target Analysis

The aim of the fixed target analysis is to compare the number of evaluations
required by the algorithms to reach a given target objective value. For fairer
aggregations and comparisons, since the benchmark functions have different
global minima, and by recalling that such global minima are known, here we
considered target precision errors, i.e. differences with respect to the known
global minimum values. In particular, we have investigated five target errors as
follows: t ∈ {10−8, 10−4, 0.01, 0.1, 1}.

We denote with T (A, f, i, b, t) the number of evaluations required by an
algorithm A, in its i-th execution on the problem f , to reach a precision error
smaller or equal to the target t, within the allotted budget of evaluations b.
Hence, T (A, f, i, b, t) may assume integer values in [1, b], or ∞ when the target
is not reached. As described in Section 3.3, we consider b = 200 000 as maximum

19

allowed budget of evaluations.
In order to measure the performances of the algorithms, the following statis-

tics are taken into account:

SR =
1

r

r∑
i=1

1 (T (A, f, i, b, t) <∞) , (2)

AR =
1

r

r∑
i=1

min{T (A, f, i, b, t), b}, (3)

ERT =
AR

SR
, (4)

where: r is the number of executions of algorithm A on problem f , while 1(ξ)
is the indicator function of the event ξ.

The empirical success rate SR ∈ [0, 1] is the fraction of executions in which
the algorithm reached the given target within the allowed budget of evalua-
tions. The average runtime AR ∈ [1, b] is the average number of evaluations
required by an algorithm to reach the given target, counting b evaluations for
non-successful executions. The expected runtime ERT penalizes AR by dividing
it by the success rate SR. Practically, ERT corresponds to the expected number
of evaluations required to reach the target t by a multistart version of the algo-
rithm A, i.e. an algorithm which restarts its execution after b evaluations and
stops as soon as the target t is reached. It is worth noting that SR = 0 implies
ERT =∞. These measures are widely used in the literature (see e.g. [36]) and
can be safely aggregated across multiple instances and multiple problems.

For each dimension D ∈ {5, 10, 20, 40}, Figure 4 shows a histogram graph
formed by five groups – one for each target – with a bar for each algorithm.
The height of the bar reflects the success rate SR of the algorithm aggregated
on all the benchmark functions with the given dimension.

Figure 4 can be commented as follows:

• as expected, the success rates decreases when the dimension increases,
though the success rates of CMA-ES seems to be less affected by the
increase of dimension;

• BHPOP has a slightly larger success rate than BH in almost all the cases;

• BHPOP and BH are, blue on average, more successful than PSO and DE;

• with a target greater or equal to 10−4, BHPOP seems to be competitive
with CMA-ES and, most notably, with target t = 0.01 it is always more
successful than CMA-ES.

To further analyze this last point, Table 3 provides the success rates and the
expected runtimes for each single benchmark function investigated with target
t = 0.01 and dimension D = 40.

Overall, BHPOP obtains the highest success rate and, most notably, 10
best ERT values are obtained by BHPOP and BH, whereas the rest of the

20

10 8 10 4 0.01 0.1 1
Target

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

D = 5

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

10 8 10 4 0.01 0.1 1
Target

D = 10

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

10 8 10 4 0.01 0.1 1
Target

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

D = 20

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

10 8 10 4 0.01 0.1 1
Target

D = 40

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

Figure 4: Average success rates achieved by the five algorithms, grouped by
dimension and target precision.

competitor algorithms only obtained four best ERT s. The two Basin Hopping
variants seem to be much quicker in the unimodal functions (see in particular
f1 and f5). The best improvement of BHPOP with respect to BH is especially
noticeable in functions f21 and f22. In particular, BHPOP is the only algorithm
with a non-null success rate on f22. Conversely, CMA-ES is the only algorithm
able to solve f17 in at least one execution, with the considered precision and
within the allowed budget of evaluations.

In order to summarize the analysis with a single picture, Figure 5 plots,
for each algorithm, the empirical cumulative density function (ECDF) of the
percentage of successful executions, by considering all the five targets t ∈
{10−8, 10−4, 0.01, 0.1, 1}, as the number of function evaluations increases.

21

SR ERT

Function BHPOP BH DE PSO CMA-ES BHPOP BH DE PSO CMA-ES

f1 1.00 1.00 0.00 1.00 1.00 83 85 ∞ 7919 2230
f2 0.91 0.97 0.00 1.00 1.00 141533 134692 ∞ 24366 43542
f3 0.00 0.00 0.00 0.00 0.00 ∞ ∞ ∞ ∞ ∞
f4 0.00 0.00 0.00 0.00 0.00 ∞ ∞ ∞ ∞ ∞
f5 1.00 1.00 0.00 0.00 1.00 117 121 ∞ ∞ 4547

f6 1.00 1.00 0.00 0.00 1.00 35704 35180 ∞ ∞ 11561
f7 0.00 0.00 0.00 0.00 0.00 ∞ ∞ ∞ ∞ ∞
f8 1.00 0.89 0.00 0.15 0.91 15559 32686 ∞ 1277990 77342
f9 1.00 0.82 0.00 0.00 0.96 11854 54516 ∞ ∞ 65501

f10 0.86 0.89 0.00 0.00 1.00 171796 168694 ∞ ∞ 49549
f11 1.00 1.00 0.00 0.00 1.00 12356 8751 ∞ ∞ 24537
f12 1.00 1.00 0.00 0.04 1.00 5674 5482 ∞ 4328758 21069
f13 0.73 0.98 0.00 0.05 0.11 140351 55327 ∞ 3937568 1616223
f14 1.00 1.00 0.00 1.00 1.00 1143 1148 ∞ 14816 3712

f15 0.00 0.00 0.00 0.00 0.00 ∞ ∞ ∞ ∞ ∞
f16 0.00 0.00 0.00 0.00 0.00 ∞ ∞ ∞ ∞ ∞
f17 0.00 0.00 0.00 0.00 0.04 ∞ ∞ ∞ ∞ 4307962
f18 0.00 0.00 0.00 0.00 0.00 ∞ ∞ ∞ ∞ ∞
f19 0.00 0.00 0.00 0.00 0.00 ∞ ∞ ∞ ∞ ∞
f20 0.00 0.00 0.00 0.00 0.00 ∞ ∞ ∞ ∞ ∞
f21 0.57 0.02 0.00 0.11 0.22 164332 11050720 ∞ 1683405 720267
f22 0.01 0.00 0.00 0.00 0.00 22318143 ∞ ∞ ∞ ∞
f23 0.00 0.00 0.00 0.00 0.00 ∞ ∞ ∞ ∞ ∞
f24 0.00 0.00 0.00 0.00 0.00 ∞ ∞ ∞ ∞ ∞

Overall 0.46 0.44 0.00 0.14 0.43 7 bests 3 bests 0 bests 1 best 3 bests

Table 3: Success Rates (SRs) and Expected Run Times (ERTs) restricted to
the functions with dimension D = 40 and 0.01 as target error. Best results per
function are denoted in boldface. The last row of the table contains the average
SRs and the number of times the algorithm obtained the best ERT. Horizontal
lines are used to group the functions with similar characteristics, as described
in Section 3.2.

10 100 1 000 10 000 100 000
Function Evaluations

0%

10%

20%

30%

40%

50%

Pe
rc

en
ta

ge
 o

f s
uc

ce
ss

fu
l (

ta
rg

et
,e

xe
cu

tio
n)

 p
ai

rs

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

Figure 5: The curves represent the empirical cumulative density function
(ECDF) for each algorithm inset as a function of the number of function evalu-
ations on the x-axis (log scale). ECDF curves show the increase in percentage
of successful (target,execution) pairs as the number of function evaluations in-
creases.

22

Figure 5 shows that, on average: BHPOP starts to improve its success rate
with respect to BH after roughly 500 evaluations; BHPOP and BH are more than
competitive with CMA-ES for budgets until about 25 000 evaluations; while, for
larger budgets, Figure 5 confirms the same “three-bands” standing derived from
Figure 2, i.e., CMA-ES is more successful than BHPOP and BH, which, in turn,
are largely more successful than PSO and DE.

4.4 Discussion

This experimental investigation, performed over a wide range of benchmark
functions which cover many different characteristics that may be encountered in
real-world problems, shows that the simple search scheme of Basin Hopping may
be competitive with more recent and sophisticated metaheuristics, especially
when out-of-the-box implementations, available in popular and largely adopted
software libraries, are considered.

As an extreme synthesis of the analyses provided in Sections 4.2 and 4.3,
it is possible to derive a three-bands standing of the five algorithms as follows:
CMA-ES /BHPOP, BH / PSO, DE. In order to have a clearer visual perception
of the three-bands standing, we provide in Figure 6 the critical difference dia-
gram2 showing the Friedman average ranks of the algorithms together with thick
horizontal lines connecting cliques of algorithms that are not significantly differ-
ent to each other, according to the same adjusted Conover post-hoc procedure
used for Figure 2.

1 2 3 4 5

2.16CMA-ES
2.76BHPOP
2.91BH

3.40 PSO
3.77 DE

Figure 6: Critical difference diagram showing pairwise statistical difference com-
parison of the five algorithms over the considered problems, according to the
Conover post-hoc test with Benjamini-Hochberg adjustment and α = 0.05 as
significance level. The main horizontal axis represents ranks, the algorithms
point to and are labeled with their average ranks, while thick horizontal lines
connect cliques of algorithms which are not significantly different to each other.

Delving deeper into the details not captured by the high-level summary de-
picted in Figure 6, it is interesting to observe where BHPOP outperforms vanilla
BH, and when and why it might be preferred to the overall best performing
CMA-ES algorithm.

Firstly, the results presented in Section 4.3 show that BHPOP improves the
success rate of BH across the entire benchmark suite. This suggests that incor-

2Critical difference diagrams have been introduced in [37] and then adapted to generic
pairwise comparison tests in [38].

23

Time in seconds Overhead w.r.t. random search

Algorithm D = 20 D = 40 D = 60 D = 80 D = 100 D = 20 D = 40 D = 60 D = 80 D = 100

BHPOP 0.28 0.47 0.95 1.56 2.69 1.51 1.95 3.32 3.89 5.58
CMA-ES 3.10 4.51 4.16 5.35 5.63 16.87 18.76 14.54 13.41 11.69

Table 4: Computational time in seconds and overhead with respect to a pure
random search, averaged over 10 executions of 10 000 evaluations on f24 by
considering different dimensions.

porating a population management mechanism into the basic BH search scheme
leads to a more robust algorithm. Secondly, a closer examination of the results
provided in Section 4.2 shows that BHPOP significantly improves the perfor-
mance of vanilla BH when dealing with problems presenting a weakly regular
multi-modal landscape. This improvement likely arises from the population-
based scheme of BHPOP, which fosters a “breadth-focused” search, allowing
BHPOP to explore the irregularities of the landscape more extensively com-
pared to the trajectory-based BH algorithm.

Moreover, while CMA-ES emerges as the overall top-performing algorithm
based on the experimental results examined so far, it is important to highlight
that there are specific scenarios where BHPOP may be a more advantageous
choice over CMA-ES. Indeed, the results presented in Sections 4.2 and 4.3 show
that BHPOP outperforms CMA-ES in four scenarios: (i) when the problem
dimension is low (D = 5), (ii) for separable problems, even when they have
a higher dimension, (iii) when a moderate precision level (10−2) is required,
(iv) when the available budget is limited to around 1000 evaluations. Essen-
tially, BHPOP may be preferred to CMA-ES for simpler problems or in situa-
tions characterized by tight resource constraints, i.e., those scenarios where the
covariance matrix maintained by CMA-ES becomes more of a hindrance than
a benefit.

Finally, to investigate the computational time in terms of seconds, we car-
ried out an extra experiment where we recorded the execution time of BHPOP,
CMA-ES and a silly random search algorithm. The three algorithms were exe-
cuted 10 times on the benchmark function f24, with a budget of 10 000 evalu-
ations, and by considering five increasing dimensions D ∈ {20, 40, 60, 80, 100}.
All the algorithms are implemented in Python (CMA-ES comes from the pre-
viously mentioned Nevergrad library) and this experiment is run on a machine
equipped with a CPU Intel Core i7-10510U with a maximum clock rate of 2.30
GHz, 16 GB of memory and Windows 10 as operating system. The average com-
putational time in seconds of BHPOP and CMA-ES are provided in Table 4,
together with their overheads with respect to the random search execution time
(i.e., the time required by BHPOP/CMA-ES divided by the time required by
the random search).

As expected, Table 4 clearly shows that BHPOP has a much lower compu-
tational complexity than CMA-ES, thus further extending the scenarios where
simple Basin Hopping metaheuristics may be considered in practical applica-
tions.

24

5 Real World Problems

Comparing algorithms on well designed benchmark function sets, as the one
used here, is no doubt a useful step forward towards understanding the origin of
problem difficulty and the behavior of a given metaheuristic. However, testing
the algorithms on some difficult problem coming from a real application field
in science or engineering is also highly recommended as, in the end, all these
techniques are developed to solve real problems. The first problem we consider
is the Lennard-Jones potential used to compute atomic clusters energies which is
among the examples contained in the CEC2011 document describing a number
of difficult optimization problems coming from real applications [39]. Atomic
clusters are systems constituted by tens or at most a few hundreds of atoms held
together by forces that are, in a first crude approximation, derivable from semi-
empirical two-atom potentials. Stable cluster structures at zero temperature
must be at the minimum of the potential energy given as the sum of all pair
interactions between the cluster atoms. Two semi-empirical potentials are often
used: the Lennard-Jones potential and the Morse potential. The interatomic
potential Vij of the Lennard-Jones type between atoms i and j is:

Vij = 4ϵ

[(
σ

rij

)12

−
(

σ

rij

)6]
,

where rij is the distance between atoms i and j, ϵ is the depth of the potential
well, and σ is the distance at which the potential is zero. The first term repre-
sents a repulsion while the second is attractive. The total potential energy E
to minimize for a cluster of Na atoms is given by:

E = 4ϵ

Na−1∑
i=1

Na∑
j=i+1

Vij .

In the calculation, reduced units are used setting ϵ and σ to 1. This is a hard
problem that has been tackled with various stochastic techniques giving rise to
known putative global minima for values of Na up to Na ∼ 200. The equilibrium
structures thus obtained are also very interesting in Chemical Physics (see,
e.g., [11, 12]) but, given our focus on metaheuristics, will not be discussed here.

While Lennard-Jones potentials come from the study of the interaction of
inert gases like Neon, the Morse potential was conceived for the case of diatomic
molecules to study their vibrational behavior. For a cluster of Na atoms with
two-body interactions only, it has the following form:

E = ϵ

Na−1∑
i=1

Na∑
j=i+1

ϵe(ρ(1−rij/re)(eρ(1−rij/re) − 2),

where rij is the separation between atoms i and j, ϵ is the pair well depth,
re is the pair equilibrium distance, and ρ is a dimensionless parameter that
determines the range of the interatomic forces. Here we use reduced parameters

25

Average results ± Std. Deviations Best results

Problem D BHPOP BH DE PSO CMA-ES BHPOP BH DE PSO CMA-ES

LJ 20 60 -72.08± 2.83 -73.40± 5.07 -13.58± 2.35 -55.10± 9.48 -68.78± 4.46 -76.21 -77.18 -19.71 -69.03 -76.21

LJ 30 90 -122.49± 2.36 -122.05± 6.74 -15.41± 1.57 -92.56± 15.44 -109.13± 28.50 -126.59 -127.75 -18.64 -119.77 -126.16

LJ 40 120 -174.00± 3.63 -175.73± 11.29 -19.38± 2.30 -129.72± 15.23 -170.75± 3.59 -178.94 -183.15 -23.62 -162.76 -176.78

MO 20 60 -33.54± 4.37 -53.33± 10.56 -11.12± 1.28 -44.33± 8.30 -37.57± 10.64 -43.83 -70.72 -13.57 -58.34 -62.03

MO 30 90 -57.03± 5.08 -78.91± 13.14 -13.09± 1.22 -70.53± 12.08 -58.24± 15.71 -65.02 -100.39 -15.51 -93.71 -74.14

MO 40 120 -84.56± 7.96 -119.19± 20.03 -16.07± 1.44 -95.88± 13.89 -88.76± 13.03 -102.30 -151.74 -18.60 -122.60 -114.06

Average Ranks 2.83 1.17 5.00 3.00 3.00 3.17 1.00 5.00 3.17 2.67

Table 5: Average results, standard deviations and best results obtained by the
five algorithms on the six real-world problems. In the first two columns LJ
and MO stand for Lennard-Jones and Morse respectively, and D is the problem
dimension which is equal to 3× number of atoms in the cluster. For each
problem, the result of the best algorithm is provided in bold, while the last line
contains the average ranks over the six problems here considered.

ϵ = 1, re = 1, and ρ = 6. Finding the stable structures, i.e., those having
the minimal potential energy for Morse clusters is at least as hard as in the
Lennard-Jones case. All the known best minima for both the Lennard-Jones
and Morse potentials, for Na > 2 and up to Na = 150, are tabulated and can
be found at www-wales.ch.cam.ac.uk/CCD.html.

In keeping with the black-box approach followed in the benchmark using the
test functions described in the previous sections, and to avoid biases against
methods that are gradient-free, we do not make direct use of the gradient of the
above functions, although it can be easily computed analytically. Also, while
for best results in large clusters problem knowledge is required, for the sake of
comparison our metaheuristics only use the problem objective function. In this
way, the test is more representative of general black-box global optimization.

Table 5 summarizes the results obtained on the above problems. The prob-
lem instances are identified by a string of the form P Na, where P ∈ {LJ ,MO}
indicates Lennard-Jones or Morse, while Na ∈ {20, 30, 40} is the number of
atoms. Since both the problems require to find three coordinates per atom,
the dimension is D = 3Na. The averages are taken over 15 executions and the
number of allowed function evaluations per run is 2 × 104 × D, the same for
all the algorithms tested. Table 5 provides the average, standard deviation and
minimal objective value returned by the algorithms.

The results indicate that BH obtains the best results overall on the two
problems, both on average as well as absolute best. BHPOP is a close second
on the LJ problems, but it is less accurate on the Morse problems, where it
is beaten by CMA-ES and PSO. DE obtains the worse results on all problems
and problem sizes. The ranking confirms BH, BHPOP and CMA-ES as being
the best methods on both synthetic and real-world functions, at least as far as
the function test set and the two problems studied here are concerned. It is of
course possible that more sophisticated and finely tuned versions of PSO and
DE would be more competitive but our philosophy throughout the paper was
to use entry-level metaheuristics that are easy to parameterize and run.

26

www-wales.ch.cam.ac.uk/CCD.html

103 104 105 106

Function Evaluations

70

60

50

40

30

20

10

0

Be
st

-s
o-

fa
r o

bj
ec

tiv
e

va
lu

e

LJ_20

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

103 104 105 106

Function Evaluations

60

50

40

30

20

10

0

Be
st

-s
o-

fa
r o

bj
ec

tiv
e

va
lu

e

MO_20

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

103 104 105 106

Function Evaluations

120

100

80

60

40

20

0

Be
st

-s
o-

fa
r o

bj
ec

tiv
e

va
lu

e

LJ_30

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

103 104 105 106

Function Evaluations

80

60

40

20

0
Be

st
-s

o-
fa

r o
bj

ec
tiv

e
va

lu
e

MO_30

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

103 104 105 106

Function Evaluations

175

150

125

100

75

50

25

0

Be
st

-s
o-

fa
r o

bj
ec

tiv
e

va
lu

e

LJ_40

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

103 104 105 106

Function Evaluations

140

120

100

80

60

40

20

0

Be
st

-s
o-

fa
r o

bj
ec

tiv
e

va
lu

e

MO_40

Algorithms
BHPOP
BH
DE
PSO
CMA-ES

Figure 7: Convergence curves of the best-so-far objective value of the five al-
gorithms for the Lennard-Jones and Morse cluster problems with 20, 30, and
40 atoms. The curves are averaged over 15 runs for each problem. The shaded
area represents the 95% confidence interval. The x-axis is in log-scale and, for
the sake of presentation, it is shown starting from 1000 evaluations.

27

Figure 7 shows another aspect of the computational experiment, namely the
convergence curves for the two problems and the three problem sizes considered.
It is apparent that BH not only outperforms the other algorithms in terms of
accuracy but it is also, in general, the fastest one. Depending on the problem
and its size, BHPOP is very good on LJ but it is slower on the Morse problems,
on which CMA-ES and PSO show slightly better performances. However, it
is interesting to note that the convergence curves of BH and BHPOP almost
overlap up to about 100 000 evaluations while, after this point, BH seems to
boost its convergence towards a better region of the search space. Then, in the
LJ problems BHPOP fills the gap after about 1 000 000 evaluations, while this
does not happen in the more difficult MO problems (at least, with the allocated
budget). Apparently, the population-based approach of BHPOP slows down the
convergence of the basin hopping search strategy for this type of problems.

6 Conclusions and Future Work

Our aim in this study was to compare a straightforward optimization algorithm
called Basin Hopping and a newly introduced population variant of it (called
BHPOP), with the popular metaheuristics DE, PSO, and CMA-ES. These meta-
heuristics are used daily with satisfactory results by many researchers and we
were thus interested in finding out whether BH can be competitive with them.
To be of any value, a comparison such as this must be carried out on a signif-
icant benchmark and the results analyzed for statistical significance. To fulfill
these requirements we performed numerical experiments using the IOH profiler
environment with the BBOB test function set. The experiments were carried
out in two different but complementary ways: we measured the performance
under a given fixed budget of function evaluations and by considering a fixed
target value. The former gives information about the algorithm’s accuracy, i.e.,
how close it comes to the known global optimum, while the second focuses on
the number of evaluations required to reach a given target objective function
value.

We can summarize the results as follows. On the accuracy criterion at a
fixed budget, three algorithms, i.e., CMA-ES, BHPOP and BH, are significantly
superior to PSO and DE, with some differences on different function types.
Among the best three, CMA-ES is the clear winner, closely followed by BHPOP
and BH. In the other class, PSO is better overall than DE. The results of the
fixed target analysis confirm that the same three algorithms stand out with PSO,
and especially DE being less efficient. Beyond this high-level summary, we have
also observed that: (i) the population-based approach of BHPOP improves the
performances of the vanilla BH scheme, especially in weakly regular multi-modal
landscapes, and (ii) there are specific scenarios where BHPOP can be preferred
to CMA-ES, i.e., when the problem at hand is separable or low-dimensional
and under tight time constraints or when a moderate accuracy suffices. It must
be said once again that the results are strictly valid only for the BBOB test
function set and for the algorithms with the parameterization used here. It

28

might therefore well be, for example, that a better version of DE, which had the
worst results here, would outperform some or all of the other metaheuristics.
However, we think that the results do show a clear general trend and that they
are relevant in the scenario where out-of-the-box algorithms’ implementations
provided in a well known software library are adopted.

To strengthen our analysis, we also used two hard real-world problems: the
minimization of the potential energy of atomic clusters, where atoms are held
together by atom-atom potentials of the Lennard-Jones and Morse types. The
results on three medium-size instances of each problem showed that BH gives
the best results, followed by BHPOP, CMA-ES, PSO, and DE.

The general conclusion, as far as BH and BHPOP are concerned, is that they
are almost as good than CMA-ES on the synthetic benchmark functions and
better than it on the two hard cluster energy minimization problems. Thus, BH
can be considered a good candidate, especially if one wants to obtain quick and
reliable results on an unknown problem. On the other hand, it is probably more
difficult to improve on the basic version of BH with respect to more sophisticated
approaches contained in evolved versions of PSO and DE.

Future work includes a deeper study of the perturbation technique in BH and
alternative methods for selection in BHPOP, as well as the role of the population
size with respect to the problem dimension. In fact, in light of the convergence
analysis performed on the two real-world problems considered in this work, we
believe that a dynamically changing population size can allow the search to:
(i) reduce the population size and speed up the convergence once a good region
of the search space has been located and, conversely, (ii) increase the population
size in order to escape from stagnation situations when they occur. Finally, we
would also like to extend the experiments to other benchmark test sets, other
recent metaheuristics not examined here, and the inclusion of more real-world
problems.

References

[1] Charles Audet and Warren Hare. Derivative-free and blackbox optimization.
Springer International Publishing, Cham, 2017.

[2] Thomas Bäck, Christophe Foussette, and Peter Krause. Contemporary
Evolution Strategies. Springer, Berlin, Heidelberg, 2013.

[3] Rainer Storn and Kenneth Price. Differential evolution–a simple and effi-
cient heuristic for global optimization over continuous spaces. Journal of
global optimization, 11(4):341–359, 1997.

[4] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[5] James Kennedy and Russell Eberhart. Particle swarm optimization. In
Proceedings of ICNN’95-International Conference on Neural Networks, vol-
ume 4, pages 1942–1948. IEEE, 1995.

29

[6] Leo Liberti. Introduction to global optimization. Ecole Polytechnique, 2008.

[7] M.Locatelli and F. Schoen. Global optimization: theory, algorithms, and
applications. Society for Industrial and Applied Mathematics, Philadelphia,
USA, 2013.

[8] Mykel J Kochenderfer and Tim A Wheeler. Algorithms for optimization.
MIT Press, Cambridge, Massachusetts, 2019.

[9] Y. D. Sergeyev, D. E. Kvasov, and M. S. Mukhametzhanov. On the effi-
ciency of nature-inspired metaheuristics in expensive global optimization
with limited budget. Scientific Reports, 8(1):1–9, 2018.

[10] Duc Truong Pham and Marco Castellani. Benchmarking and comparison of
nature-inspired population-based continuous optimisation algorithms. Soft
Computing, 18(5):871–903, 2014.

[11] David J Wales and Jonathan PK Doye. Global optimization by basin-
hopping and the lowest energy structures of Lennard-Jones clusters contain-
ing up to 110 atoms. The Journal of Physical Chemistry A, 101(28):5111–
5116, 1997.

[12] David J Wales and Harold A Scheraga. Global optimization of clusters,
crystals, and biomolecules. Science, 285(5432):1368–1372, 1999.

[13] Jonathan PK Doye, Robert H Leary, Marco Locatelli, and Fabio Schoen.
Global optimization of Morse clusters by potential energy transformations.
INFORMS Journal on Computing, 16(4):371–379, 2004.

[14] Marcel Kucharik, Ivo L Hofacker, Peter F Stadler, and Jing Qin. Basin
hopping graph: a computational framework to characterize RNA folding
landscapes. Bioinformatics, 30(14):2009–2017, 2014.

[15] Ce Zhou, Christian Ieritano, and William Scott Hopkins. Augmenting
basin-hopping with techniques from unsupervised machine learning: Ap-
plications in spectroscopy and ion mobility. Frontiers in Chemistry, 7:519,
2019.

[16] Atreyee Banerjee, Dipti Jasrasaria, Samuel P Niblett, and David J Wales.
Crystal structure prediction for benzene using basin-hopping global opti-
mization. The Journal of Physical Chemistry A, 125(17):3776–3784, 2021.

[17] Marco Baioletti, Alfredo Milani, Valentino Santucci, and Marco Tomassini.
Comparing basin hopping with differential evolution and particle swarm op-
timization. In International Conference on the Applications of Evolutionary
Computation (Part of EvoStar), pages 46–60. Springer, 2022.

[18] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-
parameter black-box optimization benchmarking 2009: Noiseless functions
definitions. PhD thesis, INRIA, 2009.

30

[19] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck.
IOHprofiler: A benchmarking and profiling tool for iterative optimization
heuristics. arXiv preprint arXiv:1810.05281, 2018.

[20] P. Baudis. COCOpf: An algorithm portfolio framework. arXiv preprint
arXiv:1405.3487, 2014.

[21] A. Grosso, M. Locatelli, and F. Schoen. An experimental analysis of a
population based approach for global optimization. Computational Opti-
mization and Applications, 38(3):351–370, 2007.

[22] A. Grosso, M. Locatelli, and F. Schoen. A population-based approach for
hard global optimization problems based on dissimilarity measures. Math-
ematical Programming, 110(2):373–404, 2007.

[23] R. H. Leary. Global optimization on funneling landscapes. Journal of
Global Optimization, 18(4):367–383, 2000.

[24] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method
for large scale optimization. Mathematical programming, 45(1-3):503–528,
1989.

[25] John A Nelder and Roger Mead. A simplex method for function minimiza-
tion. The Computer Journal, 7(4):308–313, 1965.

[26] Michael JD Powell. An efficient method for finding the minimum of a
function of several variables without calculating derivatives. The computer
journal, 7(2):155–162, 1964.

[27] Helena Ramalhinho Lourenço, Olivier C Martin, and Thomas Stützle. It-
erated local search: Framework and applications. In Handbook of meta-
heuristics, pages 129–168. Springer, Boston, MA, 2019.

[28] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation dis-
tributions in evolution strategies: The covariance matrix adaptation. In
Proceedings of IEEE International Conference on Evolutionary Computa-
tion, pages 312–317. IEEE, 1996.

[29] J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization plat-
form. https://GitHub.com/FacebookResearch/Nevergrad, 2018.

[30] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

31

http://arxiv.org/abs/1810.05281
http://arxiv.org/abs/1405.3487
https://GitHub.com/FacebookResearch/Nevergrad

[31] Henri Faure, Friedrich Pillichshammer, Gottlieb Pirsic, and Wolfgang Ch
Schmid. L2 discrepancy of generalized two-dimensional hammersley point
sets scrambled with arbitrary permutations. Acta Arithmetica, 4(141):395–
418, 2010.

[32] David H Wolpert and William G Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–
82, 1997.

[33] Aureli Alabert, Alessandro Berti, Ricard Caballero, and Marco Ferrante.
No-free-lunch theorems in the continuum. Theoretical Computer Science,
600:98–106, 2015.

[34] Joaqúın Derrac, Salvador Garćıa, Daniel Molina, and Francisco Her-
rera. A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algo-
rithms. Swarm and Evolutionary Computation, 1(1):3–18, 2011.

[35] Myles Hollander, Douglas A Wolfe, and Eric Chicken. Nonparametric sta-
tistical methods, volume 751. John Wiley & Sons, Ltd, Hoboken, New
Jersey, USA, 2013.

[36] Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas
Bäck. IOHanalyzer: Detailed performance analyses for iterative optimiza-
tion heuristics. ACM Transactions on Evolutionary Learning and Opti-
mization, 2(1):1–29, 2022.

[37] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine Learning Research, 7:1–30, 2006.

[38] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane
Idoumghar, and Pierre-Alain Muller. Deep learning for time series classi-
fication: a review. Data Mining and Knowledge Discovery, 33(4):917–963,
2019.

[39] S. Das and P. N.Suganthan. Problem definitions and evaluation criteria
for cec 2011 competition on testing evolutionary algorithms on real world
optimization problems. Jadavpur University, Nanyang Technological Uni-
versity, Kolkata, pages 341–359, 2010.

32

	Introduction
	Metaheuristics
	Basin Hopping
	Population-based Basin Hopping
	Differential Evolution
	Covariance Matrix Adaptation Evolution Strategy
	Particle Swarm Optimization

	Experimental Setup
	Implementations of the algorithms
	Benchmark functions
	Design of the experiments

	Experimental Results
	Preliminary comparison between BHPOP and PBH
	Fixed Budget Analysis
	Fixed Target Analysis
	Discussion

	Real World Problems
	Conclusions and Future Work

