
A simple yet effective algorithm for the Asteroid Routing Problem

Valentino Santucci a

University for Foreigners of Perugia, Perugia, Italy
valentino.santucci@unistrapg.it

Keywords: Expensive Black-Box Permutation Optimization, Asteroid Routing Problem, Randomized Local Search.

Abstract: In this paper we investigate the application of meta-heuristic algorithms in the context of expensive black-box
permutation optimization. These problems are characterized by solution spaces composed of permutations of
items, where the objective function is not explicitly defined in a closed mathematical form and is costly to
evaluate. The benchmark problem under investigation is the Asteroid Routing Problem (ARP), which aims to
determine the optimal order for a spacecraft to visit asteroids, starting from Earth’s orbit, while minimizing
both energy consumption and visit time. In particular, we examine the effectiveness of a simple algorithm,
namely FAT-RLS, which is mainly based on the randomized local search scheme, equipped with a tabu struc-
ture and a mechanism to regulate the perturbation strength. A series of experiments were performed on ac-
cepted instances of the ARP in order to compare the effectiveness of FAT-RLS with respect to two established
meta-heuristics for the ARP. The results clearly show that FAT-RLS achieves more effective results both con-
sidering a black-box setting and an informed setting, where the meta-heuristics are seeded with a purposely
designed constructive algorithm for the ARP.

1 INTRODUCTION

Expensive black-box optimization is a challenging
task in a variety of domains, from engineering to fi-
nance, and deals with problems where the objective
function lacks a mathematical closed form and re-
quires substantial computational resources, not only
in terms of time but also memory or money. In
such scenarios, algorithms can only gather informa-
tion about the problem through successive objective
function evaluations. However, due to the high cost
of evaluations, these algorithms typically operate un-
der strict computational budget constraints, de facto
limiting the number of evaluations allowed.

When dealing with continuous decision variables,
Bayesian optimization techniques (Frazier, 2018) are
commonly used. These methods iteratively construct
a surrogate model, typically a Gaussian process or
Kriging model, of the objective function at hand.
They then conduct a relatively large number of in-
expensive surrogate evaluations to identify candidate
solutions, which are subsequently evaluated using the
true objective function. This approach reduces the
amount of costly evaluations and allows to apply clas-
sical optimization strategies guided solely by the sur-
rogate model.

a https://orcid.org/0000-0003-1483-7998

In this work, we focus on a family of combina-
torial optimization problems, the permutation prob-
lems, where solutions are formed by permutations of
items from a given set. In particular, we investigate
a recently proposed benchmark problem for expen-
sive black-box permutation optimization, the Asteroid
Routing Problem (ARP) introduced in (López-Ibáñez
et al., 2022).

The ARP takes inspiration from the 11–th Global
Trajectory Optimisation Competition1 and deals with
a spacecraft that, once launched from Earth, must visit
all the asteroids in a given set by minimizing both
its energy consumption and the total time required to
complete the journey. While our focus is not on the
astrophysical aspects of the problem, it is worth not-
ing that the ARP’s main motivation stems from the
increasing demand for technological devices like mo-
bile phones and computers, which is leading to a rapid
decrease of mineral resources, such as silicon, quartz
or boronite, on Earth. Consequently, one potential so-
lution to this issue is the prospect of mining these ma-
terials from asteroids or other near-Earth objects.

From a computational perspective, the ARP
presents a permutation problem in which the objec-

1For complete details about the competition we re-
fer the interested reader to the following webpage
https://sophia.estec.esa.int/gtoc portal/?page id=782.

tive function requires to run a costly internal com-
putational procedure. As such, it stands as the first
benchmark proposed for expensive black-box permu-
tation optimization.

Due to its combinatorial nature, classical
Gaussian-based Bayesian methods cannot be ap-
plied to the ARP. In (López-Ibáñez et al., 2022),
two specific algorithms were employed: CEGO, a
distance-based Bayesian approach for combinatorial
problems, and UMM, an estimation of distribution
algorithm for permutation problems that has been
redesigned to work in low budget scenarios.

In (Santucci and Baioletti, 2022), it was shown
that both CEGO and UMM were outperformed by a
simple algorithm, called FAT-RLS and based on the
well known randomized local search scheme, when
dealing with classical permutation benchmark prob-
lems such as the Linear Ordering Problem or the Per-
mutation Flowshop Problem. Here we are interested
in studying the effectiveness of FAT-RLS on a proper
expensive black-box permutation problem such as the
ARP.

The rest of the paper is organized as follows. In
Section 2 permutation problems and other prelimi-
nary concepts are presented. Section 3 describes the
computational details of the ARP, while Section 4
presents the FAT-RLS algorithm. Section 5 briefly
recalls the competitor algorithms used in the experi-
mentation, while the experimental settings and results
are presented and discussed in Section 6. Finally, con-
clusions are drawn in Section 7, where future lines of
research are also depicted.

2 PERMUTATION PROBLEMS

Permutations are versatile algebraic objects that find
applications in many different fields because of their
ability to model a variety of concepts, including or-
derings and rankings of items, one-to-one mappings
between two sets, as well as tours and sets of cycles
within a collection of locations.

Permutations, which are usually denoted by
Greek symbols such as π or σ, can be mathemat-
ically defined as bijective functions onto the set
[n] = {1,2, . . . ,n}. Several notations are available,
though the simplest and most common one is the so-
called single line notation, where a permutation π is
represented as a list of all different items, i.e.,

π = ⟨π(1),π(2), . . . ,π(n)⟩, (1)
where π(i) ∈ [n] indicates the item in position i ∈ [n]
in the list, ensuring that π(i) ̸= π(j) for any pair i ̸= j.

The set of all the permutations of degree n is de-
noted by Sn, which has cardinality n! and is also

known as the symmetric group. In fact, the standard
function composition operation allows to compose
two permutations into a third permutation. Given two
permutations π and σ, their composition is denoted
by πσ and its elements are πσ(i) = π(σ(i)), for all
i ∈ [n]. The composition operation is associative, ad-
mits a unique identity permutation ι = ⟨1,2, . . . ,n⟩,
and each permutation π has a unique inverse permu-
tation π−1 such that ππ−1 = π−1π = ι. These three
properties prove that Sn is a group, a characteristic
that has been exploited to design both swarm and
evolutionary algorithms based on strong mathemati-
cal foundations (Santucci et al., 2020).

In permutation optimization problems, the goal is
to minimize or maximize a given objective function
of the form f : Sn→ R, i.e., a real-valued function
whose domain is the set of permutations Sn. Permu-
tation problems are combinatorial in nature, so f is
not differentiable and classical gradient-based algo-
rithms cannot be adopted2. Moreover, if f has no an-
alytical definition – for example, because it requires
to run an experiment –, the problem is a black-box
problem, so an algorithm can only gather information
about f by testing multiple permutation solutions and
observing the returned objective values. Often, black-
box optimization problems are also characterized by
an objective function that is expensive to evaluate in
terms of time – for example, because it requires to run
a computationally intensive simulation –, but also in
terms of other resources such as memory or money.
Therefore, a suitable algorithm for expensive black-
box permutation optimization problems is required to
navigate the search space of permutations and should
be able to reach a good enough solution within a low
budget of objective function evaluations.

Even in a black-box scenario, it is often possible
to intuitively identify which features of a permutation
are important for a given problem simply by exam-
ining the problem description. Indeed, two distinct
families of permutation problems can be identified:

• ordering problems, where the objective is to deter-
mine the optimal sequence of items within a given
set A, and

• assignment problems, where the aim is to find the
best possible one-to-one correspondence between
two given sets A and B of equal size.

While these classifications may not be exhaustive,
they cover many permutation problems frequently en-
countered in the scientific literature. For example, the
Linear Ordering Problem (LOP) (Santucci and Cebe-
rio, 2020) and the Permutation Flowshop Scheduling

2Though model-based gradient search algorithms are
possible (Ceberio and Santucci, 2023).

Problem (PFSP) (Santucci et al., 2016) are two typ-
ical examples of ordering problems, while the poly-
nomially solvable Assignment Problem (Kuhn, 1955)
and its NP-Hard quadratic variant – the Quadratic As-
signment Problem (QAP) (Koopmans and Beckmann,
1955) – are common examples of assignment prob-
lems. Moreover, also the well known Traveling Sales-
man Problem (TSP) (Nagata and Kobayashi, 2013),
though requiring to determine a circular tour among
a given set of cities, can be seen as an ordering prob-
lem by (arbitrarily) designating a start/end city for all
the tours, so that they can be represented as orderings
over the remaining cities.

It is important to note that the distinction be-
tween ordering and assignment problems is not al-
ways clear-cut. In fact, it is known that both TSP and
LOP instances can be seen as special cases of QAP in-
stances (Loiola et al., 2007), thus suggesting that the
boundary between the ordering or assignment nature
of a permutation problem is not yet well understood.

Two of the most commonly used genotypic repre-
sentations for permutation problems are the classical
linear representation and the permutation matrix rep-
resentation. The linear representation is essentially
the transposition in memory of the single line nota-
tion described in Equation (1). In contrast, the permu-
tation matrix representation encodes a permutation as
a binary matrix with exactly one 1-entry in each row
and each column. While the linear representation is
suitable for both ordering and assignment problems,
the matrix representation does not directly encode any
ordering information, but only the pairings between
rows and columns indices. For this reason, in this
work we adopt the linear genotypic representation of
permutation solutions.

In the context of ordering problems, there are two
equivalent linear representations: ordering represen-
tation and ranking representation, as termed in (San-
tucci and Baioletti, 2022). As mentioned earlier, an
ordering problem involves optimally arranging a set
A of n items according to a given objective function.
The ordering representation maps positions to items
of A, while the ranking representation maps items of
A to positions. Since the items of A are denoted by
identification numbers in [n], it is apparent how easy
it is to confuse the two. In fact, both linear repre-
sentations convey the same information and can be
converted into each other by a simple permutation in-
version. Anyway, it is crucial to specify which repre-
sentation is being used when defining the objective
function and the algorithms/operators for permuta-
tion problems. In fact, using an incorrect representa-
tion without the necessary conversion, when required
by the objective function or the algorithm/operator at

hand, can lead to errors that are difficult to detect
but detrimental for the effectiveness. In this work we
adopt the ordering representation.

Finally, it is worth noting that in the permuta-
tion space, different movement operators are avail-
able to build local search schemes or genetic opera-
tors such as mutation. The three most commonly used
classes of movement operators are: swaps of two ad-
jacent items (also called adjacent swaps), swaps of
two generic items (also called exchanges), and shifts
of an item to another position (also called insertions).
While exchanges are known to be suitable for as-
signment problems, adjacent swaps and insertions are
appropriate for ordering problems (Baioletti et al.,
2020). Moreover, it is easy to see that insertion moves
include adjacent swaps as special cases, and a single
insertion move is equivalent to a chain of multiple ad-
jacent swaps. Therefore, insertion moves are usually
adopted in the design of algorithms for ordering prob-
lems.

3 THE ASTEROID ROUTING
PROBLEM

The Asteroid Routing Problem (ARP) was introduced
in (López-Ibáñez et al., 2022) as a benchmark for ex-
pensive black-box permutation optimization. It in-
volves planning a route for a spacecraft that, once
launched from Earth, must visit all the asteroids in
a given set of n asteroids A = {a1,a2, . . . ,an} in such
a way that it minimizes both its fuel consumption and
the total time required to complete the journey.

The ARP is a bilevel optimization problem con-
sisting of two nested tasks. The outer task involves
determining an ordering of the asteroids in A, while
the inner task requires calculating the parking and
transit times for reaching each asteroid in the order
given by the outer task.

A solution for the bilevel ARP is a pair (π, t),
where: π ∈ Sn encodes the ordering of A, while the
vector t ∈ R2n

≥0 encodes the parking and transit times
for each asteroid. More specifically, assuming that a0
represents the Earth, for each step i ∈ [n]:

• aπ(i) is the i-th asteroid visited by the spacecraft,

• t2i−1 is the parking time spent by the spacecraft in
the orbit of asteroid aπ(i−1), and

• t2i is the transit time required for the spacecraft to
travel from the orbit of asteroid aπ(i−1) to the orbit
of asteroid aπ(i).

To formalize the objective function of the ARP, we
also consider the following auxiliary variables:

• τi, for i ∈ {0,1, . . . ,n− 1}, is the launch epoch
from the orbit of asteroid aπ(i);

• ∆v2i−1 and ∆v2i, for i ∈ [n], are the impulses re-
quired for the maneuvers to insert the spacecraft
into the transit orbit between asteroids aπ(i−1) and
aπ(i), and then into the parking orbit of asteroid
aπ(i), respectively.

The spacecraft is on Earth at start epoch τ0, which
is given by the ARP instance, while the other launch
epochs are computed as follows:

τi−1 = τ0 +
2i−1

∑
j=1

t j. (2)

For each step i ∈ [n], the transit and parking im-
pulses ∆v2i−1 and ∆v2i allow the spacecraft to ren-
dezvous with asteroid aπ(i). These velocity impulses
are computed as solutions of the so-called Lambert’s
problem, i.e.,

(∆v2i−1,∆v2i) = Lambert(aπ(i−1),aπ(i),τi−1, t2i), (3)

for which we refer the interested reader to (López-
Ibáñez et al., 2022) and (Izzo, 2015).

Once the upper-level permutation π is available,
Equations (2) and (3) define the inner task, which con-
sists of n continuous optimization problems that, after
being sequentially solved, yield the vector of times t
and the vector of the velocity impulses ∆v.

In (López-Ibáñez et al., 2022), the inner contin-
uous problems are solved using the Sequential Least
Squares Programming (SLSQP) algorithm (Virtanen
et al., 2020), a deterministic method which allows to
focus on the outer task of the ARP problem by treat-
ing the computations of the values for t and ∆v as
an internal deterministic procedure depending only on
the provided asteroid ordering π. Therefore, the two
levels of the problem are collapsed into one, and the
ARP becomes a black-box permutation problem of
ordering nature, whose goal is to minimize the objec-
tive function defined on the domain of permutations
Sn as

f (π) =
2n

∑
i=1
|∆vi|+

2 km/s
30 days

·
2n

∑
i=1

ti, (4)

where: the first summation is proportional to the en-
ergy consumed by the spacecraft to perform all the
maneuvers, the second summation represents the to-
tal time taken by the spacecraft to complete its jour-
ney, while the constant in front of the second sum-
mation has been experimentally derived in (López-
Ibáñez et al., 2022).

Since computing Equation (4) is computationally
expensive (because it requires to sequentially solve
n internal continuous optimization tasks), the ARP

stands as an appropriate benchmark for expensive
black-box permutation optimization.

Finally, note that an ARP instance is completely
defined by: the orbital parameters of the Earth and
all asteroids, the starting epoch τ0, and a gravi-
tational parameter. An instance generator is pro-
vided in (López-Ibáñez et al., 2022) which takes
as input a seed parameter and the number of as-
teroids n, i.e., the size of the generated instance.
The implementations of the ARP objective func-
tion and the instance generator are available from
https://doi.org/10.5281/zenodo.5725837.

4 FAT-RLS

The Fast Adaptive Tabu-based Randomized Local
Search (FAT-RLS), introduced in (Santucci and Baio-
letti, 2022), is an iterative optimization heuristic de-
signed for expensive black-box permutation prob-
lems. FAT-RLS is based on the classical random-
ized local search scheme and incorporates two addi-
tional algorithmic components: an adaptive perturba-
tion strength strategy and a tabu-based mechanism to
avoid redundant perturbations.

The randomized local search (RLS) is a trajectory-
based scheme that evolves a single solution by ran-
domly selecting one of its neighbor at each iteration
and, if the neighbor solution is fitter, it replaces the
current solution for the next iteration. Due to its
simplicity, RLS has been extensively studied in theo-
retical evolutionary computation (Neumann and We-
gener, 2007), though it is not commonly used in prac-
tical scenarios. However, we chose RLS as the search
engine for the proposed algorithm because it is very
exploitative and it requires only one objective func-
tion evaluation per iteration. This makes it ideal for
effectively utilizing the limited budget of evaluations
in an expensive black-box scenario. Moreover, every
iteration simply requires applying a movement oper-
ator to the current solution, thus resulting in minimal
computational overhead. This is particularly advanta-
geous, specially if compared to the computationally
intensive model learning and update procedures of
Bayesian approaches such as (Zaefferer et al., 2014b;
Zaefferer et al., 2014a).

Since our focus is on the ARP that, as detailed in
Section 3, can be classified as a permutation order-
ing problem, we consider insertion moves to perturb
the solutions of FAT-RLS. Given an ARP instance of
size n and a solution π ∈ Sn, an insertion (i, j), with
i, j ∈ [n], involves shifting the item π(i) to position
j in π. Therefore, by denoting with σ the permuta-
tion obtained by applying insertion (i, j) to π, we have

that, in a forward insertion with i < j:

σ(k) =


π(k) if k < i or k > j,
π(k+1) if i≤ k < j,
π(i) if k = j,

(5)

while, in a backward insertion with i > j:

σ(k) =


π(k) if k < j or k > i,
π(k−1) if j < k ≤ i,
π(i) if k = j.

(6)

Equations (5) and (6) show that an insertion (i, j)
rearranges |i− j|+ 1 items in a permutation, making
the insertion equivalent to a series of |i− j| adjacent
swaps. Considering forward insertions, as depicted in
Equation (5) (though the case of backward insertions
is analogous), insertion (i, j) corresponds to the fol-
lowing chain of |i− j| adjacent swaps

(i, i+1), (i+1, i+2), . . . , (j−1, j).

A clear consequence is that the Kendall’s-τ distance3

between σ and π is |i− j|. Therefore, we consider
d = |i− j| as the perturbation strength of a generic
insertion (i, j).

In FAT-RLS, rather than randomly selecting one
insertion move as in classical randomized local search
schemes, we control the perturbation strength d at
each iteration. Indeed, FAT-RLS employs an adap-
tive perturbation strength strategy, requiring two hy-
perparameters: the initial perturbation strength dini
and the steepness factor β. After initializing the per-
turbation strength d to dini, FAT-RLS perturbs the cur-
rent solution with a randomly selected insertion (i, j)
such that |i− j|= d. Meanwhile, d monotonically de-
creases using a “skewed S-shaped” function regulated
by β. This strategy fosters the transition from explo-
rative to exploitative behaviour over iterations, a well
known best practice in designing meta-heuristic algo-
rithms (Chopard and Tomassini, 2018).

The “skewed S-shaped” function has both domain
and codomain in [0,1] and, given β≥ 1, is defined as

sβ(p) = 1− 1

1+
(

1−p
p

)β
. (7)

Hence, the perturbation strength d at each iteration
is computed by rounding the product of the initial
strength dini and the s function applied to the per-
centage of evolution made (i.e., the ratio of the cur-
rent iteration number to the allowed iteration budget).

3A possible definition for the Kendall’s-τ distance be-
tween two permutations is the number of adjacent swaps to
make one permutation equal to the other.

Figure 1 depicts the function sβ(p) across various β

values. Specifically, when β = 1, s1(p) = 1− p, lead-
ing to a linear decrease of the perturbation strength,
while as β increases the curve steepens in the central
part, thus extending the initial exploration phase and
making more abrupt and quick the transition to the
final exploitative phase.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

s
(p

)

= 1
= 2
= 3

Figure 1: The “skewed S”-shaped function for β = 1,2,3.

Moreover, as FAT-RLS will be employed in a low-
budget optimization scenario, we introduce a tabu-
based mechanism. Its purpose is not only to avoid
the trajectory followed by a FAT-RLS execution from
revisiting solutions previously explored, but also to
prevent the same items from being shifted too often by
the perturbation operation. FAT-RLS maintains a tabu
queue TQ of maximum size k, an algorithm hyperpa-
rameter. At each iteration, an insertion (i, j) cannot
be selected if the item σ(i) to be shifted is marked as
tabu, i.e., if σ(i) ∈ TQ. Then, when a valid insertion
(i, j), i.e., such that σ(i) ̸∈ TQ, is selected and applied
to the current permutation, the item σ(i) is pushed
into TQ and, if the queue is full, the oldest inserted
item is removed.

In summary, FAT-RLS adopts a simple random-
ized local search scheme which only performs one
objective function evaluation per iteration and, to im-
prove its effectiveness in the low budget scenario typ-
ical of expensive black-box permutation problems, it
employs both an adaptive perturbation strength strat-
egy and a tabu-based mechanism which restrict the
number of applicable perturbations in each iteration,
aiming to accelerate towards potentially good solu-
tions.

Finally, for the sake of completeness, we present
the pseudocode of FAT-RLS in Algorithm 1. It aims
to minimizes (without loss of generality) an objective
function of the form f : Sn→R, by taking in input the
three hyperparameters dini ∈ [1,n), β ≥ 1, and k ≤ n,
as previously discussed.

Algorithm 1 Pseudocode of FAT-RLS

1: function FAT-RLS(dini, β, k)

2: /* Initialization */
3: π← random permutation from Sn
4: Evaluate f (π)
5: nfev← 1
6: TQ← /0

7: /* Main loop */
8: while nfev < budget do
9: /* Compute perturbation strength */

10: p← nfev/budget
11: d← round

(
1+ sβ(p) · (dini−1)

)
12: /* Perturbation */
13: σ← π

14: Sample i, j s.t. |i− j|= d and σ(i) ̸∈ TQ
15: Perform the insertion (i, j) on σ

16: /* Update current solution */
17: Evaluate f (σ)
18: if f (σ)< f (π) then
19: π← σ

20: nfev← nfev+1

21: /* Update tabu queue */
22: Push item σ(j) into TQ
23: if |TQ|= k then
24: Pop oldest item from TQ

25: return π, f (π)

5 OTHER OPTIMIZATION
ALGORITHMS

The goal of this work is to investigate the perfor-
mance of the FAT-RLS algorithm, described in Sec-
tion 4, on the ARP, i.e., the permutation ordering
problem detailed in Section 3. To this end, we ex-
perimentally compare FAT-RLS against four competi-
tor algorithms: a simple Random Search (RS) scheme
used as a baseline competitor, the constructive heuris-
tic called Greedy Nearest Neighbor (GNN) specif-
ically introduced in (López-Ibáñez et al., 2022) for
the ARP, the Bayesian algorithm known as Combina-
torial Efficient Global Optimization (CEGO), intro-
duced in (Zaefferer et al., 2014b), and the estimation
of distribution algorithm termed Unbalanced Mallows
Model (UMM), introduced in (Irurozki and López-
Ibáñez, 2021).

In (López-Ibáñez et al., 2022), both UMM and
CEGO were executed under two settings: the unin-
formed setting, where the standalone versions of the
algorithms were run, and the informed setting, where
their initial solutions were created using GNN instead
of being generated randomly.

The four competitor algorithms are briefly de-
scribed in the following subsections.

5.1 Random Search (RS)

The trivial random search procedure, denoted by RS,
is considered as a baseline method in this work. RS
generates a given number of permutation solutions
uniformly at random using the well known Fisher
Yates algorithm (Eberl, 2016), then it evaluates the
objective function on all the generated solutions and
returns the best one. Although trivial, RS is an inter-
esting baseline method because all solutions can be
evaluated in parallel (at least in principle).

5.2 Greedy Nearest Neighbor (GNN)

The Greedy Nearest Neighbor heuristic, from now on
referred to as GNN4, is inspired from the well known
nearest neighbor heuristic for the TSP (Rosenkrantz
et al., 1977).

The main idea behind GNN is that a reasonably
effective permutation of the asteroids can be formed
by repeatedly visiting the asteroid which is closest, in
terms of Euclidean distance, to the last visited one, af-
ter determining the positions of all unvisited asteroids
at the time the spacecraft is arrived in the last visited
one.

The pseudocode of GNN is provided in Algo-
rithm 2, while for further details we refer the inter-
ested reader to (López-Ibáñez et al., 2022).

Algorithm 2 Pseudocode of the GNN heuristic

1: function GNN
2: s← a0 ▷ Earth’s orbit
3: τ← τ0 ▷ Epoch of the spacecraft
4: U ← [n] ▷ Unvisited asteroids
5: for i← 1 to n−1 do
6: π(i)← argmin j∈U dEucl(s,a j,τ)
7: (t2i−1, t2i)← SLSQP(s,aπ(i)) ▷ Inner task
8: τ← τ+ t2i−1 + t2i
9: U ←U \{π(i)}

10: s← aπ(i)

11: return π, f (π)

4GNN implementation is available from
https://doi.org/10.5281/zenodo.5725837.

5.3 Combinatorial Efficient Global
Optimization (CEGO)

The CEGO algorithm (Zaefferer et al., 2014b) builds
upon the well-known EGO method (Jones et al.,
1998) and adapts it for combinatorial optimization
problems. EGO was originally designed for contin-
uous domains and employs a Bayesian approach to it-
eratively learn a surrogate Gaussian process model of
the objective function. In contrast, CEGO addresses
combinatorial spaces by using a distance-based com-
binatorial surrogate model, where the classical Eu-
clidean distance of continuous spaces is replaced with
a discrete distance function which is suitable for the
search space at hand.

In (Zaefferer et al., 2014a), various distance func-
tions for the permutation space are examined. The
available implementation of CEGO5 begins by gener-
ating a few initial solutions using a max-min-distance
procedure, which are then used to construct an ini-
tial surrogate model. Subsequently, a genetic algo-
rithm utilizing operators suitable for the permutation
encoding is employed to search for optimal solutions
of the surrogate function. The best solution found is
then evaluated using the true objective function. This
evaluation allows to gain information about the objec-
tive function and to update the surrogate model main-
tained by CEGO. The process is repeated until a spec-
ified termination criterion is met.

Therefore, after the initial warm-up, each round of
CEGO consists of: (i) optimizing the surrogate func-
tion, (ii) one true objective function evaluation, and
(iii) updating the surrogate model. It is important to
note that, as experimentally shown in (Santucci and
Baioletti, 2022), the update of the surrogate model in
the permutation space is a hard problem in itself, re-
quiring a significant amount of computational time,
especially when the number of training permutations
(and their size) gets large.

For more details on the settings of the genetic al-
gorithm used in CEGO, we refer interested readers
to (Zaefferer et al., 2014a).

5.4 Unbalanced Mallows Model (UMM)

The UMM algorithm (Irurozki and López-Ibáñez,
2021) belongs to the well known family of estimation
of distribution algorithms. It iteratively alternates be-
tween learning and sampling from a Mallows model,
a well-known probability distribution model for per-
mutations (Ceberio et al., 2013). At the beginning, a

5CEGO implementation is available at https://cran.r-
project.org/web/packages/CEGO.

few solutions are randomly generated to construct the
initial Mallows model. Then, in each subsequent iter-
ation, UMM samples a permutation, evaluates it, and
updates the model accordingly.

The Mallows model is characterized by a mode
permutation π0 ∈ Sn and a dispersion parameter θ ∈
R. The mode permutation is determined using the so-
called Unbalanced Borda procedure, which weighs
previously sampled solutions based on their fitness,
ensuring that the top 10% of samples contribute 90%
of the weight. The dispersion parameter θ is corre-
lated to the expected Kendall’s-τ distance E[D] be-
tween a sample and the mode π0. This expected dis-
tance is adjusted by linearly decreasing it from

(n
2

)
/2

to 1 over the iterations.
For more detailed information about UMM, inter-

ested readers can refer to (Irurozki and López-Ibáñez,
2021)6.

6 EXPERIMENTS

6.1 Experimental Settings

Experiments were conducted using the same settings
as described in (López-Ibáñez et al., 2022). Ten ARP
benchmark instances were generated using the in-
stance generator and the seeds provided by the authors
of (López-Ibáñez et al., 2022), allowing us to reuse
the results made available by them for the competitor
and baseline algorithms. Specifically, two instances
were considered for each size n ∈ {10,15,20,25,30}
using the seeds 42 and 73. The naming scheme n seed
is used to denote each instance.

Two different experimetnal settings are consid-
ered as follows.

• Black-box setting, where the competing algo-
rithms FAT-RLS, CEGO and UMM are randomly
initialized, while RS is considered as baseline
method.

• Informed setting, where the GNN heuristic is used
both as baseline method and to produce reason-
ably good initial solutions for FAT-RLS, CEGO
and UMM.

In both settings, all the algorithms were run 30
times per instance, with each run having a budget of
100 objective function evaluations.

It is worth noting that in (López-Ibáñez et al.,
2022), two variants of both CEGO and UMM were

6UMM implementation is available at
https://zenodo.org/record/4500974.

run: one that directly considers the evolved permu-
tation for the objective function evaluation, and an-
other that inverts the permutation before evaluating
it. However, according to Section 2, only one of
these variants is actually sound. Therefore, in this
work, we consider just one CEGO and one UMM: the
ones named CEGO-order and UMM-rank in (López-
Ibáñez et al., 2022) (that clearly outperformed their
counterparts CEGO-rank and UMM-order).

Finally, the hyperparameters of the competing
algorithms were set according to their original pa-
pers, i.e., (Santucci and Baioletti, 2022) for FAT-RLS
and (López-Ibáñez et al., 2022) for UMM and CEGO.

6.2 Results in the black-box setting

The results collected in the black-box setting were an-
alyzed from two different perspectives: median per-
formances and peak performances.

For median performances, we calculated the Me-
dian Relative Percentage Deviation (MRPD) for each
algorithm A and instance I as follows

MRPDA ,I = 100 ·
medianA ,I −bestI

bestI
, (8)

where medianA ,I is the median objective value ob-
tained by algorithm A over 30 executions on in-
stance I , while bestI is the best objective value ob-
tained by any algorithm in this setting for instance I .

The MRPDs are provided in Table 1. For the
competitor algorithms UMM, CEGO and RS, values
are marked with ▲ if FAT-RLS significantly outper-
formed them, and with ▽ if FAT-RLS was signifi-
cantly outperformed. No mark indicates that the per-
formance differences were not significant. The statis-
tical analyses were conducted using the well known
Mann Whitney U test (Hollander et al., 2013), with a
significance threshold of 0.05.

Table 1 shows that, though FAT-RLS is not com-
petitive enough on the two smallest instance of size
n = 10, it is slightly better than CEGO and signif-
icantly better than the other competitors on the two
instances with n = 15, while, most notably, it signif-
icantly outperforms all the competitors on the larger
instances with n > 15.

For the peak performances, Table 2 presents the
objective values returned by the best execution of
each algorithm for each instance. Values in bold rep-
resent, for each instance, the best objective value ever
achieved by a black-box algorithm.

Table 2 shows that FAT-RLS achieved the best re-
sults in 9 out of 10 instances, while in the remain-
ing instance (10 73) it obtained the second best peak
performance after CEGO. Therefore, as also partially

Table 1: Median Relative Percentage Deviations on Black-
box Experiments. Algorithms whose results are marked
with ▲ are significantly outperformed by FAT-RLS, while
those marked with ▽ significantly outperform FAT-RLS.

Instance FAT-RLS UMM CEGO RS

10 42 12.36 13.26 9.12 ▽ 21.03 ▲
10 73 16.39 11.30 ▽ 5.07 ▽ 16.19
15 42 13.18 17.48 ▲ 14.01 25.61 ▲
15 73 10.16 15.58 ▲ 12.56 24.62 ▲
20 42 9.56 20.80 ▲ 15.50 ▲ 26.18 ▲
20 73 14.65 30.29 ▲ 23.99 ▲ 33.21 ▲
25 42 14.62 29.32 ▲ 24.57 ▲ 34.42 ▲
25 73 8.62 26.30 ▲ 18.80 ▲ 28.58 ▲
30 42 6.01 27.26 ▲ 18.95 ▲ 28.58 ▲
30 73 7.95 24.46 ▲ 18.96 ▲ 27.31 ▲

Table 2: Best Objective Values on Black-box Experiments.
Bolded results represent the best performance for each in-
stance.

Instance FAT-RLS UMM CEGO RS

10 42 346.7 346.7 346.7 389.6
10 73 329.4 329.9 324.7 343.6
15 42 505.4 516.9 515.7 583.1
15 73 515.1 530.7 523.7 573.0
20 42 698.9 729.1 726.9 777.8
20 73 676.3 810.1 730.8 813.2
25 42 837.4 966.8 945.9 1075.1
25 73 889.0 1028.7 988.7 1089.6
30 42 1062.3 1260.6 1183.0 1271.0
30 73 1098.2 1232.8 1212.1 1344.2

indicated by Table 1, where the MRPDs of FAT-RLS
improve as n gets larger, it seems that FAT-RLS is ca-
pable of achieving competitive results across the en-
tire spectrum of benchmarks, although it shows a lack
of robustness when the instance size is smaller.

6.3 Results in the informed setting

The median and peak performance analyses con-
ducted in Section 6.3 were also carried out in the in-
formed scenario, where algorithms are initialized us-
ing the solution obtained through the GNN heuristic.

Tables 3 and 4 present, respectively, the median
and best results achieved by FAT-RLS, UMM, CEGO,
and GNN in the informed setting.

The results indicate that all three meta-heuristics
improved upon the initial solution provided by GNN.
However, the performance gains over the baseline
algorithm are slightly less pronounced than in the
black-box setting. Probably, this is because the initial
solution is heuristically constructed rather than ran-
domly generated.

In the comparison between informed FAT-RLS
and informed UMM, FAT-RLS significantly outper-

Table 3: Median Relative Percentage Deviations on In-
formed Experiments. Algorithms whose results are marked
with ▲ are significantly outperformed by FAT-RLS, while
those marked with ▽ significantly outperform FAT-RLS.

Instance FAT-RLS UMM CEGO GNN

10 42 9.97 10.22 ▲ 8.68 ▽ 12.86 ▲
10 73 20.46 18.69 ▽ 10.73 ▽ 22.67 ▲
15 42 0.96 2.21 ▲ 1.32 ▲ 3.51 ▲
15 73 2.68 6.17 ▲ 2.53 12.50 ▲
20 42 3.36 16.25 ▲ 5.95 22.12 ▲
20 73 1.01 5.06 ▲ 1.73 5.98 ▲
25 42 7.69 14.29 ▲ 8.37 ▲ 17.50 ▲
25 73 0.81 13.64 ▲ 7.56 ▲ 13.72 ▲
30 42 3.59 6.77 ▲ 3.55 8.27 ▲
30 73 2.06 6.85 ▲ 1.18 ▽ 7.63 ▲

Table 4: Best Objective Values on Informed Experiments.
Bolded results represent the best performance for each in-
stance.

Instance FAT-RLS UMM CEGO GNN

10 42 381.3 381.3 346.7 391.3
10 73 385.4 367.6 324.7 398.3
15 42 493.1 490.9 491.4 508.1
15 73 512.3 532.0 519.9 576.4
20 42 689.3 729.7 707.2 841.7
20 73 659.1 672.8 652.5 691.5
25 42 805.3 895.8 865.7 946.3
25 73 807.5 885.7 863.7 918.3
30 42 1045.3 1093.9 1065.2 1131.7
30 73 959.6 1002.0 952.1 1024.7

formed UMM in 9 out of 10 instances, mirroring the
trend observed in the black-box setting. Conversely,
the comparison between informed FAT-RLS and in-
formed CEGO was more balanced. FAT-RLS signif-
icantly outperformed CEGO in 3 instances and was
significantly outperformed by CEGO in 3 other in-
stances. Additionally, FAT-RLS achieved the best so-
lution in 5 instances, while CEGO achieved the best
solution in 4 instances.

Finally, by comparing the results of Ta-
bles 2 and 4, it is worth noting that on the two
instances of size n = 10, GNN and informed FAT-
RLS did not match the results of RS and black-box
FAT-RLS, respectively. This likely indicates that
the n = 10 instances have a relatively “shallow
landscape” where random search is sufficient to
provide good results.

7 CONCLUSION AND FUTURE
WORK

In this work we have experimentally studied the effec-
tiveness of FAT-RLS, a simple trajectory-based meta-

heuristic, in dealing with the Asteroid Routing Prob-
lem (ARP). FAT-RLS adopts the well known random-
ized local search scheme, equipped with two addi-
tional algorithmic components such as a tabu data
structure and an adaptive perturbation strength mech-
anism.

We conducted a series of experiments on stan-
dard benchmark instances for the ARP, comparing the
effectiveness of FAT-RLS with two established ap-
proaches for the same problem: CEGO, a Bayesian
method for combinatorial problems, and UMM, an es-
timation of distribution algorithm tailored for permu-
tation problems. The experiments were conducted un-
der two settings: a black-box setting, where initial so-
lution(s) for the competing algorithms were randomly
generated, and an informed setting, where a purposely
defined heuristic method is used to initialize the solu-
tions of the competing meta-heuristics.

The results clearly show that FAT-RLS, despite its
simpler design, outperforms both CEGO and UMM in
the black-box scenario, i.e., when the ARP is blindly
addressed. However, when the heuristic initializa-
tion is adopted, while FAT-RLS clearly outperforms
UMM, there is no definitive evidence of superiority
over CEGO.

Therefore, these results allow us to reaffirm the
take away message previously exposed in (Santucci
and Baioletti, 2022), i.e., simple algorithms such as
FAT-RLS that are mainly based on very strong ex-
ploitation approaches, might be a viable alternative
to more sophisticated techniques when dealing in low
budget expensive black-box combinatorial scenarios.

Furthermore, the analyzed results, particularly
those from the smaller instances, also reveal that FAT-
RLS shows a lack of robustness in some cases, sug-
gesting opportunities for enhancement in this regard.
Therefore, an interesting avenue for future research
involves extending the search engine of the algo-
rithm from the randomized local search scheme to the
(1+ 1)-EA scheme (Doerr et al., 2022). Essentially,
the idea is to maintain to one the expected number
of insertion moves per iteration, while also allowing
the algorithm to perform more than one insertion per
iteration. This should maintain a strong level of ex-
ploitation, while also preventing the algorithm from
easily becoming trapped in a local optimum within
the insertion neighborhood.

ACKNOWLEDGEMENTS

Valentino Santucci has been partially supported by the
research projects: “Università per Stranieri di Perugia
– Finanziamento Dipartimentale alla Ricerca per Pro-

getti di Ricerca di Ateneo – FDR 2023”, “Università
per Stranieri di Perugia – Finanziamento Dipartimen-
tale alla Ricerca per Progetti di Ricerca di Ateneo –
FDR 2024”.

REFERENCES

Baioletti, M., Milani, A., and Santucci, V. (2020). Variable
neighborhood algebraic differential evolution: An ap-
plication to the linear ordering problem with cumula-
tive costs. Information Sciences, 507:37–52.

Ceberio, J., Irurozki, E., Mendiburu, A., and Lozano, J. A.
(2013). A distance-based ranking model estimation
of distribution algorithm for the flowshop scheduling
problem. IEEE Transactions on Evolutionary Compu-
tation, 18(2):286–300.

Ceberio, J. and Santucci, V. (2023). Model-based gradient
search for permutation problems. ACM Transactions
on Evolutionary Learning and Optimization, 3(4):1–
35.

Chopard, B. and Tomassini, M. (2018). An introduction to
metaheuristics for optimization. Springer.

Doerr, B., Ghannane, Y., and Brahim, M. I. (2022). Towards
a stronger theory for permutation-based evolutionary
algorithms. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 1390–1398.

Eberl, M. (2016). Fisher-yates shuffle. Arch. Formal Proofs,
2016:19.

Frazier, P. I. (2018). A tutorial on bayesian optimization.
arXiv preprint arXiv:1807.02811.

Hollander, M., Wolfe, D. A., and Chicken, E. (2013). Non-
parametric statistical methods, volume 751. John Wi-
ley & Sons.

Irurozki, E. and López-Ibáñez, M. (2021). Unbalanced mal-
lows models for optimizing expensive black-box per-
mutation problems. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 225–
233.

Izzo, D. (2015). Revisiting lambert’s problem. Celestial
Mechanics and Dynamical Astronomy, 121:1–15.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998).
Efficient global optimization of expensive black-box
functions. Journal of Global optimization, 13(4):455–
492.

Koopmans, T. C. and Beckmann, M. J. (1955). Assign-
ment Problems and the Location of Economic Activi-
ties. Cowles Foundation Discussion Papers 4, Cowles
Foundation for Research in Economics, Yale Univer-
sity.

Kuhn, H. W. (1955). The hungarian method for the as-
signment problem. Naval research logistics quarterly,
2(1-2):83–97.

Loiola, E. M., De Abreu, N. M. M., Boaventura-Netto,
P. O., Hahn, P., and Querido, T. (2007). A survey for
the quadratic assignment problem. European journal
of operational research, 176(2):657–690.

López-Ibáñez, M., Chicano, F., and Gil-Merino, R. (2022).
The asteroid routing problem: A benchmark for ex-
pensive black-box permutation optimization. In Inter-
national Conference on the Applications of Evolution-
ary Computation (Part of EvoStar), pages 124–140.
Springer.

Nagata, Y. and Kobayashi, S. (2013). A powerful genetic
algorithm using edge assembly crossover for the trav-
eling salesman problem. INFORMS Journal on Com-
puting, 25(2):346–363.

Neumann, F. and Wegener, I. (2007). Randomized lo-
cal search, evolutionary algorithms, and the minimum
spanning tree problem. Theoretical Computer Sci-
ence, 378(1):32–40.

Rosenkrantz, D. J., Stearns, R. E., and Lewis, II, P. M.
(1977). An analysis of several heuristics for the trav-
eling salesman problem. SIAM journal on computing,
6(3):563–581.

Santucci, V. and Baioletti, M. (2022). A fast randomized
local search for low budget optimization in black-box
permutation problems. In 2022 IEEE Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE.

Santucci, V., Baioletti, M., and Milani, A. (2016). Alge-
braic differential evolution algorithm for the permuta-
tion flowshop scheduling problem with total flowtime
criterion. IEEE Transactions on Evolutionary Com-
putation, 20(5):682–694.

Santucci, V., Baioletti, M., and Milani, A. (2020). An
algebraic framework for swarm and evolutionary al-
gorithms in combinatorial optimization. Swarm and
Evolutionary Computation, 55:100673.

Santucci, V. and Ceberio, J. (2020). Using pairwise prece-
dences for solving the linear ordering problem. Ap-
plied Soft Computing, 87.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., et al. (2020). Scipy
1.0: fundamental algorithms for scientific computing
in python. Nature methods, 17(3):261–272.

Zaefferer, M., Stork, J., and Bartz-Beielstein, T. (2014a).
Distance measures for permutations in combinatorial
efficient global optimization. In International Confer-
ence on Parallel Problem Solving from Nature, pages
373–383. Springer.

Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks,
B., and Bartz-Beielstein, T. (2014b). Efficient global
optimization for combinatorial problems. In Proceed-
ings of the 2014 annual conference on genetic and
evolutionary computation, pages 871–878.

