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A B S T R A C T   

Timely diagnosis and accurate phenotyping of amyotrophic lateral sclerosis (ALS) is of paramount importance for 
the clinical management of patients. Magnetic Resonance Imaging (MRI) plays a key role in the clinical work-up 
of ALS. In this study we investigated the usefulness of radiomics analysis on T1-weighted MRI to define a ma-
chine learning-based classification pipeline. 

We collected 53 controls and 84 patients with ALS from three different scanners. Following dataset harmo-
nization, radiomics analysis was conducted using different features selection and machine learning algorithms to 
identify the best combination in distinguishing ALS patients from controls and “Classic” from “non-Classical” ALS 
motor phenotypes. 

The combined Least Absolute Shrinkage and Selection Operator with Support Vector Machine (SVM) algo-
rithm classified ALS patients with an accuracy of 81.1%. The Maximum Relevance Minimum Redundancy with 
SVM pipeline was able to distinguish “Classic” from “non-Classical” motor phenotypes with 92.9% accuracy. 

Radiomics is a promising approach to characterize brain abnormalities in patients with ALS. Radiomics could 
help to improve diagnosis and may prove useful to assess disease severity and longitudinally monitor ALS pa-
tients along the disease course.   

1. Introduction 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative 
disease showing a progressive degeneration of motor neurons in the 
cortex, brainstem and spinal cord (Kiernan et al., 2011). Although first 
described over 150 years ago, the diagnostic landscape for ALS remains 
complex. Therefore, various diagnostic criteria for ALS have been pro-
posed over time: while some emphasize clinical evaluations of upper 
motor neuron (UMN) and lower motor neuron (LMN) signs (Brooks, 
1994; Brooks et al., 2000; Hannaford et al., 2021), others incorporate 
neurophysiological or instrumental exams for increased diagnostic 
precision (de Carvalho et al., 2008). Achieving an early diagnosis is 
critical as it allows timely intervention and facilitates patient enrollment 
in clinical trials. Thanks to the introduction of new classification systems 

and through many population-based studies, the understanding of ALS 
epidemiology has progressively advanced. For instance, the EURALS 
consortium, which collected data from nearly 24 million individuals 
across Europe, reported an ALS incidence of 2.2 per 100,000 person- 
years. In contrast, studies have found the lowest incidences in East 
Asia and South Asia, at 0.89 and 0.79 per 100,000 person-years, 
respectively (Logroscino & Piccininni, 2019). 

Simultaneous degeneration of UMN and LMN not only represents a 
hallmark of the diagnosis of ALS disease but also explains the extreme 
phenotypic heterogeneity among ALS patients. In this context, over the 
past years, several classification systems have been proposed among 
which the one developed by Chiò et al. in 2011 recognizes six different 
phenotypes, namely “Classical” ALS, bulbar ALS, respiratory ALS, flail 
arm ALS, pyramidal ALS, and flail leg ALS (Chiò et al., 2011). These 
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nosological entities are associated with different anatomical areas of 
motor neuron involvement and clinical course. “Classical” ALS involves 
simultaneous UMN and LMN degeneration and is usually fatal within 4 
years from disease onset. Conversely, the “non-Classical” ALS pheno-
types are associated with longer survival and report predominant and 
more specific onset of symptoms (Schito et al., 2020). 

Therefore, the correct and timely identification of “Classical” ALS 
phenotype is of utmost importance to personalize therapeutic ap-
proaches (Miller et al., 2009) and to stratify new patients for possible 
enrolment in clinical trials (Hardiman et al., 2011). The classification 
system of Chio et al. relies on data collected during the first year of 
illness, allowing the disease’s symptoms to manifest more clearly and 
enabling the clinician to assess the progression rate more accurately. 
Accordingly, there is a great deal of interest among clinicians and re-
searchers in the field of ALS, in identifying reliable biomarkers able to 
distinguish the different ALS phenotypes as earlier as possible, ideally at 
the time of diagnosis. 

Magnetic Resonance Imaging (MRI) has progressively acquired 
greater relevance for the in vivo assessment of central nervous system 
damage in ALS patients. Previous MRI studies revealed several imaging 
features associated to the development of ALS, including degeneration 
of the basal ganglia and brainstem structures (Milella et al., 2022), 
precentral gyrus (Bede et al., 2013; Schuster et al., 2014), corpus cal-
losum (Schuster et al., 2016) and corticospinal tracts (CST) (Ciccarelli 
et al., 2009). Cluster-based and supervised prediction models based on 
imaging biomarkers have been also developed and evaluated in many 
studies (Bede et al., 2017; Ferraro et al., 2017; Fratello et al., 2017; 
Grollemund et al., 2019; Rajagopalan et al., 2023; Schuster et al., 2016; 
Thome et al., 2022; Welsh et al., 2013). Nonetheless, these approaches 
achieved suboptimal discriminative performances with accuracy 
ranging from 59 %, for volumetric studies, to 89 % for combined models 
(i.e., clinical and diffusion-based imaging features). 

In the context of non-invasive classification of ALS, radiomics rep-
resents a novel approach that extrapolates from conventional MRI im-
ages a higher number of quantitative data. Radiomics combines 
traditional radiology, big data analysis and machine learning ap-
proaches to fill the gap between qualitative and quantitative radiology 
and pattern-based information from radiomics analysis. Radiomic has 
been successfully used in the field of neurodegenerative diseases 
showing excellent performances for both classification (Cheung et al., 
2022; Salmanpour et al., 2023; Salvatore et al., 2019; Tafuri, Filardi, 
et al., 2022) and prognostic goals (Jain et al., 2021; Tafuri et al., 2023). 

In the current study, we explored the predictive power of radiomics 
on structural T1-weighted MR images in differentiating ALS patients 
from healthy controls. Moreover, we assessed whether radiomics-based 
analysis could distinguish “Classical” from “non-Classical” ALS pheno-
types, as the former is the most common ALS phenotype, associated with 
faster disease progression and lower survival rate. To achieve this goal, 
we tested different combinations of radiomics features selectors and 
machine learning algorithms in an harmonized dataset. 

2. Materials and methods 

2.1. Participants 

We included patients from two different acquisition sites: the Center 
for Neurodegenerative Diseases and the Aging Brain of the University of 
Bari Aldo Moro at Pia Fondazione “Card. G. Panico” (‘Scanner 1’, 25 
patients with ALS, 24 controls) and the Neurology Unit of Azienda 
Ospedaliero-Universitaria Consorziale Policlinico Bari (‘Scanner 2’, 48 
patients with ALS and 20 healthy controls; ‘Scanner 3’, 11 patients with 
ALS and 10 healthy controls). 

ALS-mimicking diseases were excluded after a complete diagnostic 
work-up including hematological and cerebrospinal fluid analyses, 
electroneurography, electromyography (de Carvalho et al., 2008) and 
motor evoked potential (Zoccolella et al., 2020). None of patients met 

the Strong criteria for ALS-Frontotemporal dementia (Strong et al., 
2017). Based on clinical and instrumental examination, patients were 
classified as “Classical” ALS phenotype (n = 57) and “non-Classical” ALS 
phenotypes (n = 27, including 9 subjects with Bulbar ALS, 4 with Flail 
arm/leg and 14 (7/7) with PLMN and PUMN phenotypes). 

Demographic and clinical variables were collected during the diag-
nostic work-up including: age at diagnosis (acquired during first 
neurological clinical evaluation), age at symptom onset (AAO), onset to 
diagnosis interval (ODI), site of onset and clinical phenotypes according 
to the classification system (Chiò et al., 2011). All patients were evalu-
ated with ALS Functional Rating Scale-Revised (ALSFRS-r) (Cedarbaum 
et al., 1999). 

The control group was selected according to ADNI-3 criteria (Weiner 
et al., 2017) excluding subjects with evidence of autoimmune, inflam-
matory, vascular or neurodegenerative diseases. None of the controls 
had a family history of ALS, and brain MRI abnormalities. The study was 
conducted in accordance with the Declaration of Helsinki and approved 
by the local health trust’s ethics committees. Written informed consent 
was obtained from all participants. 

2.2. MRI acquisition 

All subjects underwent T1-weighted MRI at time of first neurological 
evaluation. For ‘Scanner 1′, 3D-structural MRI were acquired on a 3 T 
scanner (Philips Ingenia 3.0 T) using a Fast-Field Echo (FFE) sequence 
(repetition time = 8.2 ms, echo time = 3.8 ms, flip angle = 8◦, resolution 
= 256 × 256, slices = 200, thickness = 1 mm and field of view = 250 
mm). For ‘Scanner 2′, participants underwent an MRI on a Philips MRI 
system 1.5 T scanner using a T1-weighted MP-RAGE (Magnetization- 
Prepared Rapid Acquisition with Gradient Echo) sequence (repetition 
time = 25 ms, echo time = 4.6 ms, flip angle = 30◦, resolution = 256 ×
256, slices = 256, thickness = 0.93 mm and field of view = 240 mm). For 
‘Scanner 3′, MRI was performed with a 1.5 Tesla General Electric Signa 
MR system using a T1-weighted SPGR (Spoiled Gradient Echo) sequence 
(repetition time = 26 ms, echo time = 7 ms, flip angle = 50◦, resolution 
= 256 × 256, slices = 200, thickness = 1 mm and field of view = 250 
mm). Fluid-attenuated inversion recovery (FLAIR) and T2-weighted 
MRI sequences were performed in both sites to exclude brain abnor-
malities, including lacunar and extensive cerebrovascular lesions. 

2.3. Radiomics feature extraction 

A complete description of the processing pipeline is reported in 
Fig. 1. Pre-processing of T1-MR images was performed through Free-
Surfer (version 7.0) image analysis software (https://surfer.nmr.mgh. 
harvard.edu/). The toolbox included a first step for removal of non-
brain tissue and bias from each structural brain image. Then, the non- 
uniform intensity corrected image (nu.mgz) in the Freesurfer space 
was used to compute radiomics features. The anatomical labels of the 
Desikan–Killiany atlas (Desikan et al., 2006) were used to extract the 
Regions-Of-Interests (ROIs) from the individual cortical and subcortical 
segmentation image (aparc + aseg.mgz) considering the following areas 
in the left and right cerebral hemispheres separately: inferior temporal 
gyrus, middle temporal gyrus, superior temporal gyrus, paracentral 
lobule, precentral gyrus, thalamus, caudate, putamen, amygdala and 
hippocampus. Additionally, midbrain, pons, and medulla oblongata 
ROIs were obtained using “segmentBS.sh” script from FreeSurfer. ROIs 
were selected according to literature findings on imaging impairment in 
ALS (Grolez et al., 2016). Segmentation was conducted using a Bayesian 
parcellation approach relying on a probabilistic atlas of brainstem and 
neighboring anatomical structures (Iglesias et al., 2015). Sub-
sequentially the binary masks of specific ROIs per subject were obtained 
by a thresholding step using FSL tools (Smith et al., 2004). 

For each ROI, we extracted 88 radiomics features, including first and 
second order textural measures that highlight spatial distribution of 
voxels through four different matrices: i) Gray Level Cooccurrence 
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Matrices (GLCM); ii) Gray Level Run Length Matrices (GLRLM); iii) Gray 
Level Dependence Matrices (GLDM); and iv) Gray Level Size Zone 
Matrices (GLSZM) (all extracted features are reported in Supplementary 
Table 1) (Zwanenburg et al., 2020). The extraction procedure was 
implemented using Pyradiomics, an open-source Python package (van 
Griethuysen et al., 2017). 

2.4. Radiomics feature harmonization 

Combat-based harmonization of radiomics features was carried out 
to reduce the batch effect resulting from MRI acquisition performed at 
two sites with different scanners and acquisition protocols. This pro-
cessing estimates site-specific transformation to express radiomics data 
in a common space, and has provided satisfactory results also for rela-
tively small datasets (Goh et al., 2017; Johnson et al., 2007; Tafuri, 
Lombardi, et al., 2022). As implemented for multiple measures on 
several brain regions, features harmonization was computed using 
Empirical Bayes framework. Only healthy controls were considered for 
the estimation of the site hyperparameters of the distributions for site- 
effect correction. Moreover, to ensure unbiased results, the batch ef-
fect was estimated in the training sample of each cross-validation fold 
and then applied on the remaining subjects in test folds. The R code for 
implementing the harmonization framework is available in the work by 
Radua et al. 

(Radua et al., 2020). 

2.5. Radiomics feature selection 

Features selection and classification algorithms were implemented 
using R software (R Core Team, 2021). In order to reduce dimension-
ality, avoid collinearity and minimize the potential overfitting due to the 
huge number of radiomics measures, all radiomics studies consider 
different features selection methods to define the best predictors for the 
classification algorithm (Lambin et al., 2017). We considered three 
feature selection models: 1) Least Absolute Shrinkage and Selection 
Operator (LASSO); 2) Random Forest Recursive Feature Elimination 
(RF-RFE) and 3) Maximum Relevance — Minimum Redundancy 
(mRMR). LASSO defines the optimal penalty parameter minimizing 
“Binomial Deviance” and features with non-zero regression coefficients 
are retained (Friedman et al., 2010; Tibshirani, 1996). RF-RFE (Gre-
gorutti et al., 2017) and mRMR (Ding & Peng, 2005) rank features by 
importance and retain an optimal number proportional to √N (where N 
is the sample size) according to the method by Hua et al. (Hua et al., 

2005). In particular, RF-RFE recursively eliminates features focusing on 
the performance improvement of the selected measures on the classifi-
cation task. Conversely, mRMR, considers simultaneously redundancy 
of features to maximize the dependency between the joint distribution of 
the selected features and the classification variable. 

2.6. Classification analyses 

Four machine learning algorithms were combined using the previ-
ously selected radiomics features, namely: i) Support Vector Machine 
(SVM); ii) XGBoost; iii) Random Forest (RF) and iv) K-nearest neighbors 
(kNN). The choice of classical machine learning methods rather than 
deep learning framework was carried out due to the relatively small 
sample size. Deep learning requires thousands of images to work well 
and for small dataset is more prone to overfitting. 

For SVM classifier we used the libSVM package (Chang & Lin, 2011) 
and adopted a grid search method using a 10-fold cross-validation (CV) 
approach on the training sets to optimize the hyperparameters of SVM (a 
GridSearch was conducted for (c, C), varying along a grid with c = 0.1, 
0.5, 1, 2, 3, 4, and C = 0.001, 0.01, 0.1, 1, 5, 10, where c is the width of 
the RBF, and C controls the trade-off between having zero training errors 
and allowing misclassification). Concerning XGBoost’s hyperparameters 
(https://xgboost.ai), we implemented a tuning for the tree-based 
learners (number of trees from 100 to 500, max_depth from 1 to 10, 
shrinkage from 0.1 to 0.5 and L2 regularization from − 1 to 0) in a 10- 
fold CV setting. The “objective” hyperparameter, that defines the loss 
function to be used, was set to “binary:logistic” as for classification 
problems with probability estimation (Gonçalves et al., 2022). For the 
RF classifier we tuned the number (n = 1000, 1500, 2000, 2500) and 
maximum (n = 1:5) depth of the tree. 

In our framework, we considered binary comparisons between 
healthy controls and ALS patients and between the group of “Classical” 
and “non-Classical” ALS subjects. Of note, the Majority Weighted Mi-
nority Oversampling Technique (MWMOTE) was used to handle 
possible imbalanced learning problems for each initial dataset, allowing 
to generate additional samples for minority classes (Barua et al., 2014). 

2.7. Statistical analysis 

Data for each group were explored using descriptive statistics (mean 
± standard deviation). Group differences in age, gender, ODI, type of 
onset, clinical phenotypes and ALSFRS-r values were investigated 
through Chi-square test, one-way analysis of variance (ANOVA) and 

Fig. 1. Processing pipeline. Abbreviations: non-Classical phenotype Amyotrophic Lateral Sclerosis (ncpALS); Gray Level Cooccurrence Matrices (GLCM); Gray Level 
Run Length Matrices (GLRLM); Gray Level Dependence Matrices (GLDM); Gray Level Size Zone Matrices (GLSZM); Cross Validation (CV). 
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Kruskal–Wallis ANOVA. To assess survival, we performed a Two-Steps 
cluster analysis including reaching or not the event death or tracheos-
tomy (as categorical variable) and time to the last follow-up (as 
continuous variable) and thus dichotomized ALS patients into long and 
short survivors (Benassi et al., 2020; Chiu et al., 2001; Milella et al., 
2022). For all analyses, the corrected significance threshold was set at p 
< 0.05. 

As regards classification analyses, each combination of the three 
feature selection models and four classification algorithms was evalu-
ated in a ten times repeated 10-fold CV (Lampe et al., 2022; Zhu et al., 
2018). The feature selection methods were included in the inner loop of 
each outer loop of CV. Selected features were used to optimize and train 
each classification algorithm and the best model was used to test the 
predictive performances of the model. 

Accuracy, sensitivity, specificity and the area under the receiver 
operating characteristic curve (AUC), mediated over the 100 bootstraps 
of classification, were calculated for each model. The different classifi-
cation algorithms were compared through Friedman test followed by 
pairwise comparison using the Wilcoxon signed-rank test in cases of 
statistically significant differences. Bonferroni method was used to ac-
count for multiple comparisons and an adjusted alpha (α) level of < 0.05 
was considered statistically significant (Wong, 2017). 

A frequency-based criterion was used to select the most stable 
radiomics features according to the different feature selectors. At each 
round of the bootstrap, the features selected by LASSO, RF-RFE and 
mRMR respectively were stored and the radiomics features that 
occurred in at least 95◦ percentile of the frequency vector were 
considered the most stable. Statistical analysis was performed using R 
software (Version 3.6.3: R Core Team, 2021). 

3. Results 

3.1. Demographic and clinical characteristics 

Demographic and clinical data for healthy controls (HC) and ALS 
cases are reported in Table 1. For statistical purpose, also given the 
expected higher prevalence of “Classical” ALS compared to those with 
“non-Classical” form of the disease, these latter patients were considered 
at once and were defined as “non-Classical” ALS. No statistical differ-
ences emerged in age and sex distributions between HC and ALS 

patients. Demographic and clinical data for “Classical” ALS phenotype 
and “non-Classical” ALS phenotypes are reported in Table 2. “Classical” 
ALS patients showed a shorter interval between onset and death and 
were more likely to have short survival time compared to “non-Clas-
sical” ALS phenotypes patients. No further statistically significant dif-
ferences were observed. 

3.2. ALS classification 

Classification performances of radiomics models are reported in 
Table 3. SVM trained with features selected by LASSO (LASSO-SVM) 
showed the highest accuracy (0.811 ± 0.114), largest AUC (0.870 ±
0.113) and the best balance between specificity (0.767 ± 0.169) and 
sensitivity (0.854 ± 0.123). 

The Friedman test, conducted to assess differences between the dis-
tributions of AUC for all trained models, showed an overall p-value <
0.0001. Post-hoc test (Wilcoxon signed-rank) showed no statistical dif-
ferences between LASSO-SVM and mRMR-RF, with p-value of 1, and 
mRMR-SVM model, with p-value of 0.644 (Fig. 2a). 

The most stable features for each selector are reported in Table 5. 
The skewness of the gray-level distribution at level of right amygdala 
resulted the best discriminant feature according to LASSO and mRMR. 
Moreover, LASSO identified the Size Zone Non Uniformity Normalized 
from GLSZM matrix of the left thalamus as the best discriminant feature 
and RFE identified the Gray Level Non Uniformity of the GLDM matrix of 
the left precentral gyrus. 

3.3. Classical ALS phenotypes classification 

The classification performance of radiomics models in discriminating 
“Classical” ALS from “non-Classical” ALS phenotypes is reported in 
Table 4, together with values of accuracy, sensitivity, specificity and 
AUC. The mRMR with SVM classifier resulted the best model showing 
higher values of accuracy (0.929 ± 0.07), AUC (0.985 ± 0.031), speci-
ficity (0.962 ± 0.113), sensitivity (0.895 ± 0.112). Friedman test 
showed significant differences between models with a p-value < 0.0001. 
Post-hoc pairwise comparisons revealed that it outperformed all other 
models (Fig. 2b). 

As most stable radiomics features, we found two measures with 
mRMR (Table 5). The best features belonged to the right subcortical 
regions namely hippocampus, thalamus, besides the paracentral lobule 
and pons from the brainstem. 

4. Discussion 

In this study we explored, for the first time, the usefulness of 
radiomics analysis on T1-weighted MR images in distinguish ALS 

Table 1 
Demographic and clinical information of healthy controls (HC) and Amyo-
trophic Lateral Sclerosis (ALS) patients.   

ALS 
(n = 84) 

HC 
(n = 53) 

p-value  

Mean ± SD or % Mean ± SD or %  
Scanner/Protocol (%)    0.086 
Scanner 1 25 (29.8) 23 (43.4)  
Scanner 2 48 (57.1) 20 (37.7)  
Scanner 3 11 (13.1) 10 (18.9)  
Male Gender (%) 45 (53.6) 27 (50.9)  0.901 
Age at Sampling, years 60.67 (11.13) 61.85 (8.39)  0.508 
Age at symptoms onset, years 59.67 (11.28)   
ODI, months 14.47 (12.31)   
ALSFRSr 37.24 (7.52)   
Phenotype ALS (%)    
Bulbar 9 (10.7)   
Classical ALS 57 (67.9)   
Flail arm/leg 4 (4.8)   
PLMN 7 (8.3)   
PUMN 7 (8.3)   
Type of onset (%) [83]    
Bulbar 23 (27.4)   
Spinal 60 (71.4)   

Abbreviations: Standard Deviation (SD); Onset to diagnosis interval (ODI); 
prevalent lower motor neuron phenotype (PLMN); prevalent upper motor 
neuron phenotype (PUMN); ALS Functional Rating Scale-Revised (ALSFRS-r). 

Table 2 
Demographic and clinical information of “Classical” and “non-Classical” phe-
notypes of ALS patients.   

“Classical” ALS 
(n = 57) 

“non-Classical” 
ALS 
(n = 27) 

p- 
value  

Mean ± SD or % Mean ± SD or %  
Male Gender (%) 31 (54.4) 14 (51.9)  1.000 
Age at Sampling, years 61.49 (11.20) 58.93 (10.99)  0.327 
Age at symptoms onset, years 60.65 (11.23) 57.61 (11.29)  0.250 
ODI, months 12.60 (9.19) 18.42 (16.69)  0.043 
ALSFRSr 36.47 (7.75) 39.47 (6.49)  0.135 
Short Survival (%) 44 (77.2) 14 (51.9)  0.036 
Type of onset (%) [83]    
Bulbar 14 (24.6) 9 (33.3)  
Spinal 43 (75.4) 17 (63.0)  

Abbreviations: Standard Deviation (SD); Onset to diagnosis interval (ODI); pure 
lower motor neuron phenotype (PLMN); pure upper motor neuron phenotype 
(PUMN); ALS Functional Rating Scale-Revised (ALSFRS-r). 
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patients from healthy controls and patients with “Classical” ALS versus 
“non-Classical” ALS phenotypes. Radiomics analysis showed good ac-
curacy (81.1 %) in classifying ALS patients respect to controls. 
Conversely radiomics features were able to distinguish “Classical” ALS 
from “non-Classical” ALS motor phenotypes with 92.9 % accuracy. 
Concerning features selection and classification models, support vector 
machine performed better with radiomics features than to XGBoost, 
kNN and RF algorithms. Remarkably, the LASSO feature selector 

demonstrated superior performance when compared to the combination 
of RF-RFE and mRMR for each type of machine learning algorithm. 

Diagnosis of ALS can be exploited with different biomarkers and 
biomedical signal approaches in combination with machine learning 
algorithms. Indeed, a recent review (Fernandes et al., 2021) reports that 
electromiography (EMG), gait rhythm (GT) and MRI are the most 
widespread signals in this task, also highlighting that if EMG and GT are 
well established biomarkers with performances of discrimination above 

Table 3 
Performance metrics (mean and standard deviation) for HC vs ALS models, 
averaged over 100 bootstraps.  

Features 
selector 

Classifier Accuracy AUC Sensitivity Specificity 

LASSO SVM 0.811 
(0.114) 

0.870 
(0.113) 

0.854 
(0.123) 

0.767 
(0.169) 

RFE SVM 0.705 
(0.121) 

0.764 
(0.127) 

0.727 
(0.18) 

0.684 
(0.214) 

mRMR SVM 0.739 
(0.13) 

0.824 
(0.121) 

0.738 
(0.19) 

0.739 
(0.193) 

LASSO kNN 0.664 
(0.124) 

0.689 
(0.12) 

0.523 
(0.155) 

0.804 
(0.203) 

RFE kNN 0.638 
(0.096) 

0.707 
(0.127) 

0.57 
(0.196) 

0.706 
(0.164) 

mRMR kNN 0.596 
(0.116) 

0.663 
(0.141) 

0.525 
(0.174) 

0.667 
(0.183) 

LASSO RF 0.748 
(0.109) 

0.828 
(0.114) 

0.703 
(0.125) 

0.794 
(0.156) 

RFE RF 0.679 
(0.141) 

0.735 
(0.14) 

0.634 
(0.183) 

0.723 (0.2) 

mRMR RF 0.721 
(0.111) 

0.821 
(0.133) 

0.705 
(0.178) 

0.737 
(0.224) 

LASSO XGBoost 0.744 
(0.111) 

0.808 
(0.13) 

0.717 
(0.125) 

0.771 
(0.166) 

RFE XGBoost 0.645 
(0.132) 

0.692 
(0.148) 

0.609 
(0.171) 

0.681 
(0.183) 

mRMR XGBoost 0.706 
(0.125) 

0.778 
(0.139) 

0.691 
(0.188) 

0.72 
(0.194) 

Abbreviations: Least Absolute Shrinkage and Selection Operator (LASSO); 
Random Forest Recursive Feature Elimination (RF-RFE); Maximum Relevance 
— Minimum Redundancy (mRMR); Random Forest (RF); Support Vector Ma-
chine (SVM); K-nearest neighbors (kNN). 

Fig. 2. Pairwise comparison between combined models. Heat maps reports Bonferroni-adjusted p-values for pairwise comparisons of features selection + classifi-
cation algorithms using the Wilcoxon signed-rank test; Panel (a) shows results for model to discriminate ALS from controls and (b) for “Classical” ALS from “non- 
Classical” ALS phenotypes. Abbreviations: non-Classical phenotype Amyotrophic Lateral Sclerosis (ncpALS); Least Absolute Shrinkage and Selection Operator 
(LASSO); Random Forest Recursive Feature Elimination (RF-RFE); Maximum Relevance — Minimum Redundancy (mRMR); Random Forest (RF); Support Vector 
Machine (SVM); K-nearest neighbors (kNN). 

Table 4 
Performance metrics (mean and standard deviation) for “Classical” vs “non- 
Classical” ALS models, averaged over 100 bootstraps.  

Features 
Selector 

Classifier Accuracy AUC Sensitivity Specificity 

LASSO SVM 0.92 
(0.072) 

0.957 
(0.06) 

0.898 (0.1) 0.941 
(0.133) 

RFE SVM 0.861 
(0.109) 

0.935 
(0.069) 

0.863 
(0.159) 

0.859 
(0.184) 

mRMR SVM 0.929 
(0.07) 

0.985 
(0.031) 

0.895 
(0.122) 

0.962 
(0.113) 

LASSO kNN 0.525 
(0.101) 

0.514 
(0.141) 

0.853 
(0.16) 

0.804 
(0.234) 

RFE kNN 0.577 
(0.121) 

0.613 
(0.171) 

0.902 
(0.126) 

0.748 
(0.188) 

mRMR kNN 0.523 
(0.099) 

0.55 
(0.153) 

0.775 
(0.164) 

0.729 
(0.191) 

LASSO RF 0.807 
(0.094) 

0.942 
(0.071) 

0.929 
(0.096) 

0.686 
(0.193) 

RFE RF 0.78 
(0.135) 

0.873 
(0.095) 

0.87 
(0.139) 

0.69 
(0.177) 

mRMR RF 0.802 
(0.061) 

0.881 
(0.066) 

0.886 
(0.124) 

0.717 
(0.133) 

LASSO XGBoost 0.749 
(0.091) 

0.895 
(0.089) 

0.94 
(0.087) 

0.558 
(0.177) 

RFE XGBoost 0.759 
(0.131) 

0.837 
(0.124) 

0.89 (0.1) 0.628 
(0.211) 

mRMR XGBoost 0.713 
(0.129) 

0.805 
(0.109) 

0.817 
(0.148) 

0.609 
(0.203) 

Abbreviations: Least Absolute Shrinkage and Selection Operator (LASSO); 
Random Forest Recursive Feature Elimination (RF-RFE); Maximum Relevance 
— Minimum Redundancy (mRMR); Random Forest (RF); Support Vector Ma-
chine (SVM); K-nearest neighbors (kNN). 
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95 %, the discovery of a MRI biomarker with comparable classification 
capabilities remains an open challenge. In recent years, several studies 
have investigated the usefulness of imaging biomarkers, alone or in 
combination with clinical data and multimodal MRI, for diagnostic and 
prognostic purpose in ALS. Ferraro et al. reported that the cortical 
thickness at the level of precentral gyrus showed an accuracy of 86 % in 
distinguishing ALS patients from controls, albeit considering a single- 
cohort of patients for model training (Ferraro et al., 2017). Similarly, 
Thome et al. focused on the classification of ALS from controls using 
both structural and functional MRI data. The RF classifier trained on 
volumetric features achieved an accuracy of 59.66 %, with specificity of 
66.93 %, and sensitivity of 52.38 % (Thome et al., 2022). More recently, 
Rajagopalan et al. assessed whether MRI metrics were able to identify 
four different phenotypes of ALS patients, namely PUMN with or 
without corticospinal tract hyperintensity, “Classical” ALS and ALS-FTD. 
The authors showed that Random Forest algorithm displays the best 
performance in classifying the ALS phenotypes with an accuracy ranging 
from 70 to 94 % for the different combination of imaging biomarkers. In 
the latter study white matter metrics showed far superior performance in 
classifying ALS phenotypes compared to clinical measures or gray 
matter metrics (Rajagopalan et al., 2023). 

Overall, our results on radiomic analysis were comparable with the 
state-of-art discrimination models, confirming the difficulty in discrim-
inating ALS from controls using structural imaging measures, also 
considering second order statistical morphometric measures. This evi-
dence reflects the extreme phenotypic variability of the ALS disease 
which did not allows clinicians to identify a single discriminant neuro-
anatomical region. Noteworthy, as previous MRI studies conducted on 
gray matter, the most significant brain regions for distinguishing ALS 
patients from healthy controls were found in limbic areas (i.e., the right 
amygdala, right hippocampus, and left superior temporal lobe). 
Although the involvement of these regions in ALS has been reported in 
previous pathology and neuroimaging studies (Bede et al., 2017; Machts 
et al., 2018; Pinkhardt et al., 2006), their discriminant role has not been 
extensively examined. Importantly, the skewness of the right amygdala, 
selected through both LASSO and mRMR, highlighted a significant 
asymmetric distribution of the gray levels for this region for ALS pa-
tients, confirming a distinctive pattern of amygdala atrophy probably 
associated with the more advanced stages of the disease (Liu et al., 
2022). 

Concerning the classification performance of models “Classical” 
versus “non-Classical” ALS phenotypes, no previous studies have 
implemented a discrimination model. Among all the neuroanatomical 
structures examined, the hippocampus emerged as one of the most 
discriminative. The extensive literature on the radiological involvement 
of hippocampal circuits in ALS disease supports this finding (Anderson 
et al., 1995; Grosskreutz et al., 2006; Kato et al., 1997). A recent review 
highlighted episodic memory dysfunction in ALS occurs in addition to 
the typical executive dysfunctions associated with the ALS- 

frontotemporal dementia spectrum (Christidi et al., 2018). 
Additionally, the pons of brainstem and paracentral area were found 

to be the most discriminative and stable neuroanatomical regions in 
differentiating “Classical” versus “non-Classical” ALS phenotypes. These 
results are consistent with the well-established pathological model of 
ALS, which identifies these structures as involved in the early stage of 
the disease (Brettschneider et al., 2013). Therefore, it could be specu-
lated that in “Classical” ALS patients, the brainstem and motor areas are 
involved early on, whereas in “non-Classical” ALS phenotypes the 
pathological process could start in different neuroanatomical regions. 
Similar results were reported by previous data-driven analyses that 
showed the relative preservation of the brainstem structures only in a 
small subgroup of ALS patients (Milella et al., 2023; Tan et al., 2022). 
We extended these results by showing that the patients with none or less 
involvement of the brainstem structures belonged to the “non-Classical” 
group of ALS patients. Not surprisingly, in our cohort these latter pa-
tients were characterized by longer survival, confirming the role of the 
brainstem structures in the survival in ALS disease, as reported else-
where (Milella et al., 2022). 

This study had several limitations. First, the most important limita-
tion was the absence of an external and independent validation cohort 
which limits the generalization of results. However, although our 
models did not use an independent dataset to test the performances, we 
statistically accounted for this issue using a nested cross-validation 
training with bootstrapping. Secondly, acknowledging the constraint 
of grouping significantly different ALS phenotypes as a single group is 
both clinically and biologically inappropriate, the small number of 
subjects per phenotypes did not allows a sufficient statistical power to 
define a multiclass classifier or a cascade diagnostic model. Further in-
vestigations, also improving the sample size for each specific pheno-
types, could enable to design a suitable differential diagnosis support 
system. Finally, new studies with multicentric and larger sample size, 
also with combined set of clinical/radiological data are needed to 
confirm our results. 

5. Conclusions 

Application of radiomics potentiality on ALS discrimination can help 
the comprehension of the disruptive process of the brain affected by this 
fatal disease, also capturing invisible markers over images. Indeed, our 
radiomics approach was able to extrapolate new discriminative radio-
logical features without any other complementary demographic, clinical 
or genetic information, also comparable with volumetric features. 
Furthermore, the excellent performance of “Classical” ALS phenotype 
classification models could define a new simpler stratification approach 
based only on radiological acquisition, could help to improve diagnosis 
and may prove useful to assess disease severity and longitudinally 
monitor ALS patients along the disease course. Finally, our finding aligns 
with aims of the Sustainable Development Goals of the United Nations 

Table 5 
Most stable radiomics features for different feature selection methods as over the 95th percentile of the frequency vector.  

Model Selector Feature ROI HC ALS p-value 

HC vs ALS LASSO/mRMR Skewness Right Amygdala − 0.05 (0.28) − 0.28 (0.39)  <0.001 
HC vs ALS LASSO Glszm Size Zone Non Uniformity Normalized Left Thalamus − 0.36 (0.03) 0.35 (0.03)  0.008 
HC vs ALS RF-RFE Gldm Gray Level Non Uniformity Left Precentral 2547.78 (368.84) 2293.36 (536.15)  0.003 

Model Selector Feature ROI “Classical” ALS “non-Classical” 
ALS 

p-value 

ALS variants  mRMR gldm SmallDependenceLowGrayLevelEmphasis Right Hippocampus 0.003 (0.001) 0.002 (0.000)  0.003 

ALS variant mRMR gldm SmallDependenceLowGrayLevelEmphasis Pons 0.004 (0.002) 0.003 (0.001)  0.04 
ALS variant LASSO Glcm Correlation Right Thalamus 0.64 (0.05) 0.68 (0.05)  0.001 
ALS variant RF-RFE Kurtosis Right Paracentral 2.48 (0.23) 2.37 (0.13)  0.021 

Abbreviations: Least Absolute Shrinkage and Selection Operator (LASSO); Random Forest Recursive Feature Elimination (RF-RFE); Maximum Relevance — Minimum 
Redundancy (mRMR); Gray Level Size Zone Matrices (GLSZM); Gray Level Dependence Matrices (GLDM). 
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2030 Agenda (Take Action for the Sustainable Development Goals - 
United Nations Sustainable Development; Transforming Our World: The 
2030 Transforming our world: The 2030 Agenda for Sustainable 
Development | Department of Economic and Social Affairs), which 
emphasize the need to identify imaging features that could serve as 
reliable and accessible biomarkers for ALS across countries and ages. 
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Comi, G., Chiò, A., & Filippi, M. (2017). Multimodal structural MRI in the diagnosis 
of motor neuron diseases. NeuroImage. Clinical, 16, 240–247. https://doi.org/ 
10.1016/j.nicl.2017.08.002 

Fratello, M., Caiazzo, G., Trojsi, F., Russo, A., Tedeschi, G., Tagliaferri, R., & Esposito, F. 
(2017). Multi-View Ensemble Classification of Brain Connectivity Images for 

B. Tafuri et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.eswa.2023.122585
https://doi.org/10.1016/j.eswa.2023.122585
https://doi.org/10.1016/0022-510x(95)00069-e
https://doi.org/10.1109/TKDE.2012.232
https://doi.org/10.1109/TKDE.2012.232
https://doi.org/10.1136/jnnp-2012-302674
https://doi.org/10.1136/jnnp-2012-302674
https://doi.org/10.1016/j.nicl.2017.06.010
https://doi.org/10.1016/j.nicl.2017.06.010
https://doi.org/10.3389/fpsyg.2020.01085
https://doi.org/10.3389/fpsyg.2020.01085
https://doi.org/10.1002/ana.23937
https://doi.org/10.1002/ana.23937
https://doi.org/10.1016/0022-510x(94)90191-0
https://doi.org/10.1080/146608200300079536
https://doi.org/10.1080/146608200300079536
https://doi.org/10.1016/s0022-510x(99)00210-5
https://doi.org/10.1016/s0022-510x(99)00210-5
http://refhub.elsevier.com/S0957-4174(23)03087-7/h0050
http://refhub.elsevier.com/S0957-4174(23)03087-7/h0050
https://doi.org/10.3390/life12040514
https://doi.org/10.1136/jnnp.2010.235952
https://doi.org/10.1136/jnnp.2010.235952
https://doi.org/10.1145/502512.502549
https://doi.org/10.3389/fneur.2018.00523
https://doi.org/10.1002/hbm.20527
https://doi.org/10.1002/hbm.20527
https://doi.org/10.1016/j.clinph.2007.09.143
https://doi.org/10.1016/j.clinph.2007.09.143
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1142/s0219720005001004
https://doi.org/10.1186/s12938-021-00896-2
https://doi.org/10.1186/s12938-021-00896-2
https://doi.org/10.1016/j.nicl.2017.08.002
https://doi.org/10.1016/j.nicl.2017.08.002


Expert Systems With Applications 240 (2024) 122585

8

Neurodegeneration Type Discrimination. Neuroinformatics, 15(2), 199–213. https:// 
doi.org/10.1007/s12021-017-9324-2 

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized 
Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22. 

Goh, W. W. B., Wang, W., & Wong, L. (2017). Why Batch Effects Matter in Omics Data, 
and How to Avoid Them. Trends in Biotechnology, 35(6), 498–507. https://doi.org/ 
10.1016/j.tibtech.2017.02.012 

Gonçalves, M., Gsaxner, C., Ferreira, A., Li, J., Puladi, B., Kleesiek, J., Egger, J., & 
Alves, V. (2022). Radiomics in Head and Neck Cancer Outcome Predictions. 
Diagnostics, 12(11), 2733. https://doi.org/10.3390/diagnostics12112733 

Gregorutti, B., Michel, B., & Saint-Pierre, P. (2017). Correlation and variable importance 
in random forests. Statistics and Computing, 27(3), 659–678. https://doi.org/ 
10.1007/s11222-016-9646-1 

Grolez, G., Moreau, C., Danel-Brunaud, V., Delmaire, C., Lopes, R., Pradat, P. F., El 
Mendili, M. M., Defebvre, L., & Devos, D. (2016). The value of magnetic resonance 
imaging as a biomarker for amyotrophic lateral sclerosis: A systematic review. BMC 
Neurology, 16(1), 155. https://doi.org/10.1186/s12883-016-0672-6 

Grollemund, V., Pradat, P.-F., Querin, G., Delbot, F., Le Chat, G., Pradat-Peyre, J.-F., & 
Bede, P. (2019). Machine Learning in Amyotrophic Lateral Sclerosis: Achievements, 
Pitfalls, and Future Directions. Frontiers in Neuroscience, 13, 135. https://doi.org/ 
10.3389/fnins.2019.00135 
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