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Abstract—Low budget black-box optimization is a relevant
topic in many practical applications with expensive objective
functions or tight real-time constraints. Recently, there has
been a growing interest in addressing combinatorial permutation
problems in a low budget and black-box scenario. In this context,
most of the previously proposed algorithms learn a probabilistic
model which guides the search by trying to somehow indicate the
most effective areas of the permutation search space. However,
the large size and the inherent discontinuity of the permutation
space may lessen the effectiveness of this approach when a low, or
very low, budget of evaluations is considered. Moving from this
consideration, in this work we present a simpler elitist trajectory-
based algorithm for low budget black-box optimization of permu-
tation problems. The proposed algorithm, namely FAT-RLS, is
based on three core ideas: a randomized local search scheme, an
adaptive perturbation strength and the use of a tabu structure.
A series of experiments held on commonly adopted benchmark
problems clearly shows that FAT-RLS obtains better or compara-
ble effectiveness with respect to the previous proposals. Moreover,
its negligible computational overhead is of particular interest in
mission critical situations where tight real-time constraints have
to be matched.

Index Terms—low budget optimization, optimization under
real-time constraints, black-box permutation problems, random-
ized local search

I. INTRODUCTION

Many relevant real-world optimization problems are black-
box, i.e., they have objective functions which are not explicitly
defined in a mathematical closed form. In these cases, algo-
rithms can only rely on the values returned by the objective
function and not on its internal structure and its mathematical
properties, which are mostly unknown. Another important
challenge often posed by real-world scenarios is the expensive
evaluation of a solution, usually in terms of time, but also
in terms of space, money or other resources. For instance,
this is the case of many engineering problems (see e.g. [1]
and [2]), where the solutions are evaluated on the basis of time-
consuming experiments, physical measurements, simulations
or complex prediction models. Furthermore, in mission critical
situations (see e.g. [3]), even if the evaluation is fast, very tight
real-time constraints usually preclude a thorough exploration
of the search space.

Therefore, expensive black-box optimization problems re-
quire to be tackled with a low budget of objective function
evaluations. These requirements cut out white-box algorithms
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typical of the operational research field (like e.g. branch-
and-bound and branch-and-cut methodologies), but also many
heuristic search algorithms which are often considered in the
black-box optimization literature, such as local search methods
and most of the population-based metaheuristics. In fact, the
budget of allowed evaluations may be too small even for a
single neighborhood scan of local search algorithms, while
generational population-based metaheuristics are usually pe-
nalized by the evaluation of a complete population of solutions
at a time.

When the search space is formed by continuous decision
variables, Bayesian optimization methodologies [4] are widely
adopted because they iteratively learn a surrogate model —
usually, a Gaussian process or Kriging model — of the objective
function and perform a (relatively) large number of cheaper
surrogate evaluations to pick up a candidate solution which is
then evaluated by means of the true objective function. This
mechanism allows to save lot of expensive evaluations and to
adopt a variety of classical optimization approaches informed
only by the surrogate model (often, by means of an acquisition
function which takes into account also the uncertainty level of
the model).

A notable application example of Bayesian optimization
methods is in the machine learning field, where they are often
used for tuning the hyperparameters of many machine learning
algorithms. See e.g. [5] and [6].

However, note that the number of candidate solutions and
the computational requirements for learning and updating
the surrogate model may pose issues in real-time scenarios.
Most importantly, the accuracy of the surrogate model drasti-
cally deteriorates for moderately large search spaces. In fact,
Bayesian optimization is practically limited to no more than
20 decision variables [7, 8]. This may constitute an important
limitation in a variety of real-world applications. For instance,
in [9] and [2], simple evolution strategies largely outperform
Bayesian optimization in estimating the 60 to 120 parameters
of a hydraulic model in a low budget scenario.

In this work we are interested in low budget optimization of
black-box permutation problems, i.e., problems whose solution
space is formed by permutations of a given set of items. These
problems arise in a variety of practical domains such as, for
instance, weld sequence optimization in industry [10], opti-
mizing experimental designs of field trials in plant breeding
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Fig. 1: Relations among semantic interpretations, representations and encoding in permutation problems.

science [11], and finding an optimal restoration plan in power
grids [12] and smart grids [13].

Motivated by the large use in continuous domains, there
have been attempts of adapting the surrogate-based method-
ologies to combinatorial search spaces [14]. For instance,
[15] proposes a Bayesian optimization approach for binary
problems, while a more general algorithm is the Combinato-
rial Efficient Global Optimization (CEGO) algorithm [16, 17]
which allows to build surrogate models also in the space of
permutations. However, the issues observed with continuous
surrogate models are amplified in the combinatorial space
because of the inherent discontinuity and ruggedness of com-
binatorial landscapes. Moreover, building a discrete surrogate
model in CEGO requires an expensive computation which
may cancel out the time saved by the cheaper evaluations.
Therefore, alternative approaches have been proposed. The
two most notable ones are the Ant Colony Optimization
(ACO) proposed in [18] and the very recent Unbalanced
Mallows Model (UMM) algorithm [19] which is based on the
popular framework of estimation-of-distribution algorithms. In
particular, in [19], it was shown that, with a budget of 400
evaluations, UMM has a much smaller computational overhead
than CEGO — minutes vs hours — and achieves an effectiveness
close to, even though worse than, that of CEGO.

Moving from these considerations, here we propose to
approach low budget optimization in black-box permutation
problems with a simpler elitist trajectory-based algorithm
which quickly converges towards a good enough solution by
employing a negligible computational overhead, thus mak-
ing the proposal affordable even in mission critical prob-
lems under tight resource constraints. The proposed algo-
rithm, namely Fast Adaptive Tabu-based Randomized Local
Search (FAT-RLS), is based on three core ideas:

o a randomized local search scheme which guides the

search,

o an adaptive perturbation strength which allows a fast

convergence,

« a tabu structure which avoids redundant perturbations.
FAT-RLS, contrarily from CEGO and UMM, does not learn
any model, is elitist and invariant to monotonic transformations
of the objective function.

A comparison among FAT-RLS, CEGO and UMM is held

by performing a series of experiments with a low budget of
evaluations on instances of common benchmark permutation
problems without violating the black-box assumption.

The rest of the paper is organized as follows. Preliminary
concepts and related works are presented in Sect. II, while
Sect. III describes the proposed algorithm. The conducted
experimental analysis is presented and discussed in Sect. IV.
Finally, conclusions are drawn in Sect. V where future lines
of research are also depicted.

II. BACKGROUND
A. Representing Solutions in Permutation Problems

Permutation problems all have an objective function of the
form f : S, — R, where the domain S,, contains all the
permutations of the set [n] = {1,...,n}. Hence, permutations
are bijections of [n] onto itself and, for this reason, any 7 € S,
has its corresponding inverse 77! € S,,.

Permutations are generally used to encode the solutions of
two distinct classes of problems:

e ordering problems, where the goal is to find an optimal
ordering of a given set of items (as e.g. in the permutation
flowshop scheduling problem), and

o matching problems, where it is required to match, in the
best possible way, two given equally sized sets of items
(as e.g. in the quadratic assignment problem).

Both for ordering and matching problems, the fact that
permutations are bijections of the first n integers has to be
intended only as a genotypic encoding. Fig. 1 tries to clarify
the relationships among semantic interpretations (ordering or
matching), representations and genotypic encoding in permu-
tation problems.

Let fix the semantic interpretation of the ordering problems.
In an ordering problem, a set A of n items to be optimally
ordered (on the basis of a provided objective function) is given.
Hence, an ordering of the items in A can be represented
in two distinct ways: as a mapping from positions to items
(ordering representation), or as a mapping from items to
positions (ranking representation). Anyway, we stress that the
semantic interpretation (ordering of items) is exactly the same
for both the representations (ordering or ranking). Once chosen
a representation, the next step is to find a genotypic encoding.
Clearly, positions are integers in [n], while the items in A can



be arbitrarily assigned to (all-different) identification numbers
in [n]. Therefore, both positions and items are encoded as
elements of [n], thus a mapping between them can be easily
encoded by a permutation in S,,. In other words, the ordering
and ranking representations share the same genotypic encoding
but they still remain different representations of the same
semantic interpretation. Moreover, it is possible to easily
convert one representation into the other by simply inverting
a permutation. Formally, if 7 € &, encodes the ordering
representation of a given solution, then 7—! encodes the
ranking representation of exactly the same solution.

This discussion should clarify why, before defining the
objective function or an algorithm/operator for permutations,
it is very important to specify the representation considered.
Moreover, it should be now clear that if an objective function
expects an ordering representation in input, it is an error to
feed it with the permutation in its ranking representation. In
fact, when the algorithms/operators and the objective func-
tion are specified with different representations, a conver-
sion/inversion is always required.

Finally, note that the above argumentation, provided for
the ordering problems, can be easily extended to matching
problems (see Fig. 1).

B. Low Budget Algorithms for Permutation Problems

Here, we briefly describe the Combinatorial Efficient
Global Optimization (CEGO) and Unbalanced Mallows Model
(UMM) algorithms, which are considered later on in our
experimental analysis.

CEGO. The CEGO algorithm [16] extends the well known
EGO method [20] to combinatorial optimization problems.
EGO is designed for continuous problems and follows the
Bayesian approach by iteratively learning a Gaussian process
model of the objective function. Conversely, CEGO deals with
combinatorial spaces by adopting a combinatorial surrogate
model similar to that of EGO, but with the Euclidean distance
replaced by a suitable discrete distance function. In [17], a
variety of distance functions for the permutation space are
considered. The available implementation of CEGO' generates
few initial solutions — by means of a max-min-distance proce-
dure — and uses them to build an initial surrogate model. Then,
a genetic algorithm based on permutation operators is adopted
to search for good solutions of the surrogate function. The
best solution is selected and evaluated with the true objective
function. This evaluation allows to update the surrogate model,
and the whole process is iterated till a given termination
criterion is satisfied. For further information about the setting
of the genetic algorithm adopted in CEGO, we refer the
interested reader to [17].

UMM. The UMM algorithm [19] is an estimation-of-
distribution algorithm which iteratively alternates learning and
sampling of a Mallows model, a well known probability
distribution model for permutations [21]. Hence, few initial

ICEGO code is available at https://cran.r-project.org/web/packages/CEGO

solutions are randomly generated in order to build an initial
Mallows model, then at each iteration UMM samples one
permutation, evaluates it and updates the model. The Mallows
model is parameterized by a mode permutation oy € S,, and a
dispersion parameter § € R. The mode permutation is learned
by means of the so-called Unbalanced Borda procedure which
is run on all the previously sampled solutions that are weighted
on the basis of their fitness in a such way that the best 10%
of the samples have the 90% of the weight. Conversely, the
dispersion parameter 6 is shown to be correlated with the
expected Kendall’s-tau distance E[D] of a sample from oy,
therefore it is set in such way that E[D] linearly decreases
from (3)/2 to 1 with the iterations. For further information
about UMM, we refer the interested reader to [19]%.

III. THE PROPOSED ALGORITHM: FAT-RLS

A. Algorithmic Scheme of FAT-RLS

The Fast Adaptive Tabu-based Randomized Local Search
— from now on simply referred to as FAT-RLS — is an iterative
optimization heuristic which is based on three core ideas:
(i) a randomized local search scheme to guide the search,
(ii) an adaptive perturbation strength to allow a fast conver-
gence towards a (hopefully) good solution, and (iii) a tabu
queue to avoid redundant perturbations.

Algorithm 1 Algorithmic scheme of FAT-RLS
1: function FAT-RLS(dini, 3, k)

2: /* Initialization */
3: 7 <— a random permutation in Sy,
4: Evaluate f(m)
5: nfev < 1 > Number of evaluations performed
6: T(Q < empty queue
7: /* Main loop */
8: while nfev < budget do
9: /* Compute the perturbation strength d */
10: p + nfev/budget
11: d<round ( 1+ sg(p) - (dini — 1)) > See Eq. (1)
12: /* Perturb the current solution */
13: 4T
14: i,j < random positions s.t. |i — j| = d and 0; & TQ
15: Perform the insertion (7, j) on o
16: /* Update the current solution */
17: Evaluate f(o)
18: if f(o) < f(m) then > Minimization is assumed
19: T O
20: nfev < nfev + 1
21: /* Update the tabu queue */
22: Push item o into TQ
23: if |TQ| = k then
24: Pop the oldest item from 7'Q
25: /* Return the best solution and its value */

26: return 7, f(7)

2UMM code is available at https://zenodo.org/record/4500974



The pseudo-code of FAT-RLS is provided in Alg. 1 and uses
the ordering representation described in Sect. II-A, so 7; is the
item at position 7 in the ordering represented by 7 € S,,.

FAT-RLS is an elitist trajectory-based algorithm which
iteratively updates a single candidate solution 7w € S,, in order
to minimize a given objective function f : S, — R. The
algorithm has three parameters: the initial perturbation strength
dini, the adaptation parameter 3, and the maximum size k& of
the tabu queue.

In lines 2-6 of Alg. 1, an initial permutation 7 is randomly
generated, while the tabu queue T'Q is initialized to an empty
queue.

Then, in each iteration of the main loop (lines 8-24),
a trial permutation o is generated by performing a single
insertion move on the current solution (line 15). The insertion
(i,j) consists in shifting the item o; to position j in the
permutation o. In line 14, the indices ¢ and j of the insertion
are randomly selected from [n] in such a way that |i — j| = d
and the item o; is not listed as tabu.

Therefore, the length of the shift is given by d which, in
line 11, is iteratively decreased from di,; to 1 by means of
the “skewed S”-shaped function sg(p), defined as in Eq. (1),
which takes in input the evolution percentage p € [0, 1] (see
line 10) and is parametrized by g > 1.

1

&
1-p
1+ (%52)

Fig. 2 shows the behaviour of sg(p) for different values
of 5. In particular, when 8 = 1, we have s1(p) = 1 — p,
so the perturbation strength d is linearly decreased with the
iterations, while the rationale for setting S > 1 is to extend
both the first (explorative) and last (exploitative) parts of the
evolution, thus shortening the transition from larger to smaller
values of d in the middle part of the evolution.

sp(p) =1— (1)

sg(p)

P

Fig. 2: The “skewed S”-shaped function sg(p) for 8 = 1,2, 3.

The trial permutation o replaces the current permutation 7
if and only if it is fitter than 7 (lines 17-20), while the

shifted item is pushed into 7'Q) which cannot exceed the size k
(lines 21-24). Finally, the current solution — which is also the
best solution ever visited — is returned in line 26.

B. Analysis of FAT-RLS

The high-level search scheme of FAT-RLS is that of the
randomized local search (RLS) which has been widely ana-
lyzed for theoretical purposes (see e.g. [22]) but not too much
in practical scenarios. The main idea of the RLS scheme is
to select a random neighbor of the incumbent solution and
accepting it only if it improves its fitness, i.e., following the
elitist principle.

The neighborhood chosen for FAT-RLS is the insertion
neighborhood which is widely adopted in metaheuristics for
permutation problems (see e.g. [23,24]). However, FAT-RLS
does not consider all the possible neighbors but only those
which can be obtained by a shift of length d and such that the
shifted item is not marked as tabu.

With this regard, note that shifting an item by d positions
corresponds to jump at a permutation which is at Kendall’s-tau
distance d from the current solution®. In this sense, FAT-RLS
and UMM, though belonging to very different classes of
algorithms, have a somehow similar search behaviour, because
both iteratively perturb a permutation by jumping at a succes-
sive permutation at a given Kendall’s-tau distance, which is
forced to decrease with the iterations. The differences are that:

o UMM perturbs the Mallows centroid permutation, while
FAT-RLS perturbs the best-so-far solution;

e« UMM jumps at a given Kendall’s-tau distance in expec-
tation and isotropically, while FAT-RLS uses a restricted
insertion move;

« the perturbation strength decreases linearly in UMM and
following a “skewed S”-shaped function in FAT-RLS.

Furthermore, FAT-RLS, conversely from CEGO and UMM,
does not learn any probabilistic model, so its computational
overhead is practically negligible. In fact, excluding the ob-
jective function evaluation, the complexity of an iteration of
FAT-RLS is given by the insertion operation, so it is ©(d) and,
since d < n, it is O(n).

Another advantage of our proposal with respect to both
UMM and CEGO is that FAT-RLS is invariant to monotonic
transformations of the objective function. This aspect is rele-
vant in a lot of practical scenarios. For instance, let consider
objective values which are monetary quantities or physical
measurements. Clearly, in real-world situations we do not want
that the behaviour of the algorithm, so the quality of the
solution produced, will change on the basis of the particular
currency or unit of measurement adopted.

Finally, note that setting di,; < |[n/2] in FAT-RLS guar-
antees that there is always at least one available insertion to
select in every iteration, independently of the size of the tabu
queue.

3A shift of length d changes the relative order of the shifted item with
respect to d other items.



IV. EXPERIMENTS
A. Experimental Setup

Experiments were held with a twofold purpose: firstly,
studying and calibrating the FAT-RLS parameters and, sec-
ondly, comparing the effectiveness and efficiency of FAT-RLS
with respect to UMM and CEGO.

Instead of using real-world expensive problems, we fol-
lowed the same line of [19] and the experiments were con-
ducted with benchmark instances of classical permutation
problems without violating the black-box assumption. This
allowed for a faster experimentation. Furthermore, as in [19],
a maximum budget of 400 evaluations and 10 executions per
instance are considered.

The three selected problems are: the Linear Ordering Prob-
lem (LOP), the Permutation Flowshop Scheduling Problem
(PFSP) and the Quadratic Assignment Problem (QAP). The
LOP and the PFSP are ordering problems, while the QAP
is a matching problem. In the following, we formulate the
minimization version of the three objective functions by using
the ordering representation (for the LOP and the PFSP) and
the AB representation (for the QAP), as depicted in Sect. II-A.

LOP. Given a matrix A € R®*", the minimization version of
the LOP requires to minimize

n i1—1

min frop(m) =3 Y Arz. 2)

i=2 j=1

Note that the minimization form of the LOP is mathemat-
ically equivalent to the more widely adopted maximization
form [25, 26, 27].

PFSP. The PFSP is defined by a matrix P € R™*™ of
processing times and requires to minimize the makespan as
follows:

nin Jersp(m) = Cpom, €))

where Ci)j = Ir;.j —‘rmaX{CZ‘,l)]‘, Ci)jfl} for i € {2, o ,n}
and j € {2,...,m}, while C;; = C;1 = 0 for i € [n]
and j € [m]. For further details about the PFSP, we refer the
interested reader to [28].

QAP. Instances of the QAP are defined by two matrices
A, B € R"*" and the objective is to minimize

Inin faap(m) = Z ZAi7jB7ri,7rj- “)
" i=1 j=1

For further details about the QAP, we refer the interested
reader to [29].

Finally, for fairer comparisons and aggregations of the
results obtained in different instances, the final objective value
v produced by any execution is transformed to the relative
percentage deviation measure rpd as follows:

v — best

d =100 ———
P best ’

&)

where best is the best value observed in all the executions
in the same benchmark instance. Then, the average relative
percentage deviation — ARPD in short — of an algorithm on a
given instance is computed as the average of the rpds obtained
in the different algorithm executions on that instance.

B. Experimental Tuning of FAT-RLS Parameters

After few preliminary experiments, the following ranges of
values for the three FAT-RLS parameters are considered:

. dini S {0257170571},

e $€{1,1.2,1.4,1.6,1.8,2};

o k€4{0,0.25n,0.5n,0.75n,n}.

Hence, a full factorial analysis was performed by execut-
ing the 60 different settings of FAT-RLS on six benchmark
instances that, in order to avoid overtuning, are different from
those considered in Sect. IV-C. The selected instances are:

e N-p40-03 and N-t59f11xx for the LOP,
o rec07 and rec33 for the PFSP,
o kra30b and sko49 for the QAP.

Furthermore, any FAT-RLS setting was executed 10 times per
instance with a budget of 400 evaluations.

In each instance, the ARPDs of the settings are recorded
and used to rank the settings. Both the ranks and the ARPDs
are averaged over all the instances and presented in Tab. I for
the best five settings, ordered by average rank.

FAT-RLS Setting Avg Rank  Overall ARPD
dini B k

05n 12 n 5.00 12.37
05n 18 n 7.67 14.40
05n 14 n 8.00 11.95
0.5n 16 n 8.00 15.06
0.5n 20 n 8.00 16.09

TABLE I: Best five FAT-RLS settings by average rank.

Tab. I shows that the best setting is dj,; = 0.5n, 5 = 1.2,
k = n, therefore this is the setting adopted in Sect. IV-C for
the experimental comparison.

A further analysis of the parameter settings is conducted.
The Friedman test [30] shows that there are statistical dif-
ferences among the 60 settings, while the Conover post-hoc
test [30] reveals that the best 25 settings do not show statistical
differences among them, but are significantly better than the
others. A significance level of 0.05 is adopted for both the
omnibus and the post-hoc tests.

The best five settings shown in Tab. I all have d;,; = 0.5n
and k = n, thus giving indication that the other parameter
[ is less relevant for the effectiveness of the algorithm (at
least, with a fixed budget of evaluations). These observations
are validated also by the box-plots shown in Fig. 3, which
graphically summarize the rpds obtained by varying each
parameter value. Fig. 3 also shows that: (i) the most relevant
parameter is the perturbation strength d;,;, and (ii) the worst
executions have a relative deviation of around the 35% from
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Fig. 3: Box-plot graphs of the tuning of the three FAT-RLS parameters.

the best ones. This last point is possibly explained by the low
budget scenario considered for the experiments.

C. Experimental Comparison of FAT-RLS, UMM and CEGO

The experimental comparison of FAT-RLS with UMM and
CEGO was performed on 16 benchmark instances as listed in
the first two columns of Tab. IIL.

The eight LOP and the four PFSP instances are the same
ones investigated in [19], thus in our analysis we were able to
directly use the results provided in [19] (see the footnote 2 of
this paper). Besides, four additional instances of the matching
problem QAP were selected in order to have a more heteroge-
neous benchmark suite. Clearly, UMM and CEGO were run
on these additional instances using the code provided in [19]
and [17].

It is worthwhile to note that [19] investigates two variants
of UMM and CEGO, i.e., one which passes the permutation
as it is to the objective function, and another one which inverts
the permutation before the evaluation. As argued in Sect. II-A,
only one variant is reasonable therefore, in this work, we only
consider the correct variant of both UMM and CEGO (that,
clearly, is also the most effective).

Experiments were held using the tuned FAT-RLS configu-
ration (dip; = 0.5n, B = 1.2, k = n), while the parameter
settings discussed in [19] were used for UMM and CEGO.
Any algorithm was executed 10 times per instance and three
different budgets of 100, 200 and 400 evaluations are investi-
gated.

For the largest budget of 400 evaluations, Tab. II reports the
ARPD of each algorithm in each instance and, in the last line,
the overall ARPD over the whole benchmark suite. Best values
are provided in bold, while the ARPDs of CEGO and UMM
are marked with the symbols A or V when FAT-RLS obtained,
respectively, significantly better or significantly worse perfor-
mances; no mark is used if the differences in performance are
not significant. The Mann Whitney U test [30], with a sig-
nificance level of 0.05, was adopted to conduct the statistical
analysis.

The results provided in Tab. II may be commented as
follows:

Problem Instance FAT-RLS CEGO UMM
LOP N-p40-01 5.33 244 v 2071 A
N-p40-02 1.84 1.17 13.66 A
N-p50-01 3.58 1.61 18.16 A
N-p50-02 3.80 2.43 16.68 A
N-sgb75.01 3.46 771 A 1331 A
N-sgb75.02 451 1393 A 1822 A
N-t59b11xx 4.93 7.58 19.83 A
N-t59d11xx 1146 2097 A 58.82 A
PFSP rec05 2.05 2.51 2.51
recl3 4.40 1.89 v 5.20
recl9 5.54 4.31 6.16
rec31 2.67 4.64 A 476 A
QAP kra30a 5.12 8.67 A 9.94 A
sko42 1.88 4.06 A 6.69 A
tai35a 2.96 2.56 598 A
tho30 4.74 4.77 16.99 A
Overall ARPD 4.27 5.70 14.85

TABLE II: Experimental results with 400 evaluations.

o FAT-RLS has the best overall ARPD, largely better than
that of UMM and slightly better than that of CEGO;
 there is no instance where UMM was able to outper-
form FAT-RLS and, moreover, in 13 out of 16 instances

FAT-RLS significantly outperforms UMM;

o the comparison between FAT-RLS and CEGO is more
balanced, though FAT-RLS is significantly better than
CEGO in six instances, while it is significantly outper-
formed in only two instances.

In order to analyze the impact of the allowed computational
budget, in Fig. 4 we show the box-plot graphs of the rpds
registered by the three competitors when different numbers of
evaluations are considered.

Fig. 4 clearly shows that lessening the budget makes all the
three algorithms less robust. When 100 or 200 evaluations are
allowed, FAT-RLS has good peak performances but CEGO
looks to be more robust. Anyway, with 400 evaluations,
as previously observed, FAT-RLS reaches the same level of
robustness of CEGO with slightly better performances. Note
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Fig. 4: Experimental results at different budgets of evaluations.

also that both FAT-RLS and CEGO clearly outperform UMM
in all the scenarios considered.

Finally, it is very important to analyze the efficiency of the
three algorithms. The computational times of single executions
(with 400 evaluations allowed) of FAT-RLS, UMM and CEGO
have three very different orders of magnitude: (around 20)
hours for CEGO, minutes for UMM, and tenths of second for
FAT-RLS. Therefore, though FAT-RLS and CEGO are more
or less in line in terms of effectiveness, FAT-RLS has an
incredibly lower computational overhead than CEGO.

V. CONCLUSION AND FUTURE WORK

In this work we have proposed FAT-RLS, a trajectory-
based algorithm for low budget optimization of black-box
permutation problems. FAT-RLS is based on three core ideas:
an elitist randomized local search scheme which guides the
search, an adaptive perturbation strength to accelerate the
convergence, and a tabu structure which avoids redundant
moves.

Conversely from the previous proposals, FAT-RLS does not
maintain and update any probabilistic model, thus giving it
a negligible computational overhead both in terms of time
and memory. With this respect, note that the computational
time required by the algorithmic components of FAT-RLS is
of the order of tenths of seconds, while that of CEGO is of the
order of about two dozens of hours. This aspect is particularly
important for mission critical scenarios with tight real-time
constraints.

A series of conducted experiments reveal that the effective-
ness of FAT-RLS is in line with, and often significantly better
than, the effectiveness of the competitor algorithms.

Moreover, FAT-RLS, conversely from CEGO and UMM,
is invariant to monotonic transformations of the objective
function: a useful property in real-world situations where
different unit of measurements for the same observation may
be adopted.

Summarizing, an important take away message of this work
is that, in low budget black-box combinatorial problems,
simple algorithms like FAT-RLS might be a viable alternative
to more sophisticated techniques based on probabilistic models
that, until now, were the most considered approaches in the
analyzed scenario. Hence, the results presented show that, in
the context of low budget combinatorial optimization, there is
still room for improvement.

As future line of research, it is interesting to further extend
the experimental analysis of FAT-RLS and its competitors,
possibly considering not only benchmark problems but also
expensive and/or mission critical real-world applications.

Furthermore, it should be noted that, by design, FAT-RLS
cannot escape local optima of the insertion neighborhood.
Although, considering the results, this does not look to be a
great issue, it would be an interesting future line of research to
introduce an algorithmic mechanism that, at least theoretically,
guarantees to escape basins of attraction.

Finally, for the sake of reproducibility, source code, full
experimental results and the scripts used for the analysis were
made available at (doi: 10.5281/zenodo.6567002).
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