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Abstract: The present work aims at understanding and modelling some key aspects of the sloshing
phenomenon, related to the motion of water inside a container and its effects on the substructure.
In particular, the attention is focused on the effects of bottom shapes (flat, sloped and circular) and
water depth ratio on the natural sloshing frequencies and damping properties of the inner fluid. To
this aim, a series of experimental tests has been carried out on tanks characterised by different bottom
shapes installed over a sliding table equipped with a shear load cell for the measurement of the
dynamic base shear force. The results are useful for optimising the geometric characteristics of the
tank and the fluid mass in order to obtain enhanced energy dissipation performances by exploiting
fluid–structure interaction effects.

Keywords: tuned sloshing damper; sloshing; beating; passive damping; vibrations; structural control

1. Introduction

The aim of this paper is to investigate the dynamic properties of the sloshing phe-
nomenon inside rectangular tanks characterised by different bottom shapes. The interest is
to investigate two particular aspects of the fluid–structure interaction, namely the natural
sloshing frequency of the fluid inside the tank and its damping feature. The latter is related,
among the other features, to the beating phenomenon [1], characterised by the undesired
dynamic forces induced on the substructure due to sloshing motion.

The understanding of the aforementioned aspects is important in the framework of the
vibration control [2–4], especially in the design process of containers or passive damping
devices exploiting fluid motion, since the motions of the container and the liquid are
coupled and the resonance phenomena could occur [5–13]. The dynamics of the coupled
system generally depend on the container geometry and the amount of the inner liquid.
At a first glance, such a problem may be analysed as the case of a bifilar pendulum, even
if the physics of such a pendulum is quite different from the sloshing motion inside a
container which moves along the horizontal direction. In the case of a container suspended
as a bifilar pendulum, gravity directly provides the restoring force, working in concert
with, or in opposition, to the hydrodynamic forces, so that both in-phase and antiphase
oscillations can occur [14–16]. In the horizontal sloshing case, gravity does not directly
affect the motion of the container, being indirectly involved through the liquid motion,
whereby the hydrodynamic pressure of the liquid on its walls provides the restoring force.
Hence, the sloshing liquid is expected to be out of phase with the oscillating tank, always
accumulating in the direction opposite to that of the containers’ motion.

In some cases, the interaction between the liquid motion and the substructure could
produce significant advantages in the overall dynamics of the coupled system. A classical
example is represented by the so called Tuned Sloshing Dampers (TSD) [17–21]. Their
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working mechanism is based on the dynamic response of the liquid motion inside the tank
and its interaction with the dynamic input, generally transmitted by the structure on which
it is installed [22]. The sloshing forces transferred to the structure are called base shear forces.
In real life applications, structural systems are typically induced to move due to external
actions, e.g., wind loads or earthquakes and the liquid motion tends to come with a phase
shift with respect to the structural motion, depending on the physical properties of the
liquid itself, the tank geometries and the structural dynamics properties. This phenomenon
results in a dissipation energy by virtue of the energy exchange between the structural
system in motion and the device itself. During the dynamic motion, an energy amount is
temporarily stored and can be effective in vibration damping when released back to the
structure. This energy exchange becomes more effective if a tuning process is properly
carried out, so that the sloshing forces are able to reduce the structural vibration and
mitigate resonance effects [23].

When excited, the water wave motion quickly develops, but on the contrary, the estab-
lished wave motion does not vanish immediately after the excitation is over. This results in
the so-called beating phenomenon, consisting of long lasting undesired oscillating pulses
transmitted to the substructure with an amplitude modulation instead of an exponentially
decaying trend. This behaviour of continuous wave motion is often regarded as an adverse
effect, for instance within the structural control framework. The beating phenomenon
is due to a fraction of the energy absorbed by the device being transferred back to the
structure rather than being dissipated within the device itself, which is a result of the
complex liquid-tank system [24]. The amplitude modulation is a consequence of the near
resonating condition between structural vibration and water sloshing. Damping in liquid-
tank systems is generated by wave breaking and the impact of liquid on the container
walls, as a result of a complex free surface fluid–structure interaction problem [25–27]. For
the interested reader, damping and beating phenomena have been widely treated in the
literature on mechanical vibrations (e.g., see [28]).

Given the relevance of fluid–structural interaction phenomena in different branches
of science and engineering, in recent years several studies have been developed in order
to deeply understand the dynamics of sloshing phenomena and model their behaviour in
mechanical coupled systems [29–31] with the majority of the applications in the field of civil
engineering applications [32]. In this framework, the use of tanks with different bottom
shapes has, in fact, revealed interesting properties for technological applications, such as
the Tuned Sloshing Dampers (TSDs) not only for the case of sloped bottom shape which
represents one of the most studied [33–38] but also for different various geometries [39–43].

Besides the civil engineering applications, significant advantages can be obtained also
in different fields by simply modifying the bottom shape of the container. In this way, it
is possible to operate on the main properties of the sloshing phenomenon, i.e., natural
frequencies, damping ratios, effective mass and stiffness, which regulate the effectiveness
of the coupled dynamic systems. Even if it is known that the fluid dynamic response is
affected by the bottom geometry of the tank, there are some aspects which are still open and
require more investigations. In this work an experimental campaign aimed at investigating
the natural sloshing frequencies and the damping properties of a liquid inside a tank
characterised by different bottom shapes is carried out and some results compared through
analytical solutions available in the literature.

2. Theoretical Aspects

The theoretical background of the sloshing motion dynamics has been largely explored
in the literature. For the scope of this work, the theoretical aspects related to the analysis of
the natural sloshing frequencies for three bottom geometries have been considered, namely
the flat, the sloped and the circular shape.

The physics of the sloshing problem is represented for the general case in Figure 1,
with Oxy being the considered coordinate system. The total mass of the liquid is denoted
by mw. A motion of the internal liquid generates a variation the free surface, whose
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kinematics is described by η(x, t) denoting the vertical movement over the horizontal line.
Consequently, fluid horizontal pressures px(t) and shear actions µx(t) over the sides of the
tank produce an overall horizontal force, Fbase(t), which represents the base shear force
developing between the tank and the substructure, obtained by their integral over the
dynamic wet perimeter S

Fbase(t) =
∫
S

[
px(t) + µx(t)

]
ds (1)

Figure 1. Schematic illustration of the sloshing phenomenon and the horizontal dynamic pressures
generating on the sides of a tank having generic bottom shape.

For the flat bottom case, a tank with base length L partially filled with a liquid having
depth h has been considered. The value of the ratio h/L approaching zero determines the
well-known range of validity of the small amplitude wave theory [44]. Within this range,
linear long wave theory can be applied. The classical reference studies, based on the linear
wave theory, date back to the end of the nineteenth century, and in particular to the seminal
work of Horace Lamb on the mathematical theory of fluid motion [45].

The starting principle underneath the sloshing dynamics theoretical background is
the wave motion dynamics described by the classical Laplace equation

∂2φ

∂x2 +
∂2φ

∂y2 = 0 (2)

Following a standard solving procedure of linear theory, Lamb reports a development
through the Bessel harmonics, so that the natural frequency of sloshing for a prismatic tank
can be retrieved as a function of tank dimensions and water height [16]

f LT
w =

1
2π

√
πg
L

tanh
(

πh
L

)
(3)

Deng and Tait [39] derived the expressions of the natural frequency for tanks with
different bottom shapes also starting from the linear long wave theory and with the
assumption of small free surface fluid response amplitude. In this case, the analogous
formulation for the flat bottom geometry results as follows

f LW
w =

1
2

√
gh
L2 (4)

It is evident how the dependence from the aspect ratio of volume of fluid inside the
tank, h/L, represents a crucial parameter. It should be noted that, as stated in [39], the
linear long wave theory is valid when h/L approaches zero. In technical applications,
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i.e., related to analysis of sloshing frequencies of water tanks and or TSD, Equation (4)
gives accurate values only for h/L < 0.15. Otherwise, the possible risk is that the values
of natural frequency, effective mass, and damping ratio may be overestimated, as this
theory assumes that the horizontal component of the velocity is uniform through the liquid
depth. In this work, both the Equations (3) and (4) were used for comparison to verify
this limitation.

When dealing with different bottom shapes, the contact areas between the liquid and
the tank change and the natural sloshing frequency must be differently evaluated.

Concerning the sloped bottom case, the estimation can be obtained through a trans-
formation of the potential in the Laplace equation exploited to extract the free surface
height (Figure 2), as proposed by Idir and coauthors [46]. The Laplace Equation (2) given
in Cartesian coordinates Oxy is still valid, by denoting with flat length the projection of the
sloped length to the horizontal axis L′ = L/ cos θ. The coordinate transfer functions are
described by

x =
4

∑
i

Ni(r, s)xi (5a)

y =
4

∑
i

Ni(r, s)yi (5b)

where (xi, yi) are the coordinates of four nodes in the left reference system of Figure 2. The
shape functions of the four nodes are as follows

N1 = (s/2L′h)(2r− L′)

N2 = (s/2L′h)(−L′ − 2r)

N3 = (1/2L′h)(L′ + 2r)(h + s)

N4 = (1/2L′h)(L′ − 2r)(h + s)

Figure 2. Scheme of the coordinate transformation for the study of the Laplace equation in a sloped bottom tank.

The Laplace Equation (2) can be transformed to the reference coordinate system Ors
by differentiation of the potential φ with respect to coordinate r and s as written in the
following equation

∂2φ

∂x2 +
∂2φ

∂y2 =
∂2φ

∂r2

[(
∂r
∂x

)2

+

(
∂r
∂y

)2]
+

∂2φ

∂s2

[(
∂s
∂x

)2

+

(
∂s
∂y

)2]
+

. . . +
∂φ

∂r

[
∂2r
∂x2 +

∂2r
∂y2

]
+

∂φ

∂s

[
∂2s
∂x2 +

∂2s
∂y2

]
+

∂2φ

∂s∂r

[
2

∂s
∂x

∂r
∂x

+ 2
∂r
∂y

∂s
∂y

] (6)
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The right-hand terms of Equation (6) are determined through shape functions differentia-
tion, as follows(

∂s
∂x

)2
+

(
∂r
∂y

)2
=

(
1

cos θ

)2
, ∂2r/∂x2 + ∂2r/∂y2 = 0 (7)(

∂s
∂x

)2
+

(
∂s
∂y

)2
=

(
2h

(2h− L tan θ − 2r sin θ)

)2
, ∂2s/∂x2 + ∂2s/∂y2 = 0 (8)

2
(

∂s
∂x

)(
∂r
∂x

)
+ 2
(

∂r
∂y

)(
∂s
∂y

)
= 0 (9)

By substituting Equations (7)–(9) into Equation (6), the Laplace equation in the reference
system (r, s) is obtained

∂2φ

∂x2 +
∂2φ

∂y2 =

[
1

cos2 θ

]
∂2φ

∂r2 +

[
2h

2h− L tan θ − 2r sin θ

]
∂2φ

∂s2 = 0 (10)

For a small value of θ, the right-hand terms of Equation (10) can be simplified into

∂2φ

∂r2 +
∂2φ

∂s2 = 0 (11)

Equation (11) is the Laplace equation in the new reference system. Given that it
is identical to Equation (2), the natural frequency of the water sloshing motion can be
determined directly from Equation (3) by replacing the length with the projection of bottom
length to the horizontal axis, which is the contact length between the water and the tank
bottom. Generally speaking Equations (2) and (11) can be simplified for a specific case
neglecting the inactive components of force and motion, through a proper definition of
boundary conditions. Hence, the natural sloshing frequency in the case of the sloped
bottom tank is expressed as follows:

f SL
w =

1
2π

√
πg
L′

tanh
(

πh
L′

)
(12)

which is formally comparable with Equation (3). The same result, defining a specific
wet perimeter, was obtained by Gandarsson in 2001 [33] through the Bessel functions.
Nevertheless, as indicated in the literature, the variation of Equation (3) by introducing the
wet perimeter is considered valid for small values of θ.

In the reference work of Ibrahim [8], following again what indicated in the seminal
text of Lamb [45], a meaningful study concerning the influence of the inclination angle θ
between the lateral walls and the bottom side of the tank was reported.

In particular, with reference to the scheme reported in Figure 3, the solution of the
natural angular frequencies for the case of diverging walls at 45◦ with the assumption of
free surface oscillations independent of the axial coordinate is given

ω2
m =

m
2hα

[
g +

σ

ρR

(
m2

4α
− 1
)][

1− κm/α

1 + κm/α

]
(13)

with m being the modal wave number (set to 1 for the first vibrational mode), g the
gravitational acceleration constant, σ and ρ respectively the liquid surface tension and
the liquid density, R the curvature radius of the free surface and α, h1, k = h1/h0 being
geometrical features as in Figure 3. For the case under analysis, it has been assumed that
the curvature of the free surface is small, hence allowing to neglect the second term of the
sum inside the square brackets.
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Figure 3. Schematic illustration of a sloped bottom tank with generic angle of embrace of the
divergent lateral sides of 2απ.

Several authors reported studies with explicit analytical solutions for several geome-
tries (triangular bottom, cylindrical, spherical, conical or toroidal containers [16,20,39,47]),
but very few works addressed curved bottom geometries. Deng and Tait [39] proposed an
analytical procedure based on the Bessel functions as a solution for the Laplace Equation (2)
and derived the expression for both the pulsation and the relative natural frequency in the
case of a parabolic bottom tank, respectively, as follows

ω2
p = 2

gh
L2

0
(14)

f P
w =

√
2

π

√
gh
L2 (15)

where the geometrical parameters h, L are defined as indicated in Figure 4.

Figure 4. Schematic illustration of a tank with parabolic bottom shape.

3. Experimental Investigation
3.1. Experimental Setup

The experimental tests were carried out on a tank having a rectangular base with
dimensions in plan of 400× 200 mm and then equipped with some apparatuses to change
the bottom shape (Figure 5a). The tank is made by Plexiglas plates of 1 cm thickness
to have sufficiently rigid boundaries and at the same time the possibility of observing
the movement of the fluid during the sloshing phenomenon. Using the additional 3D
printed blocks, whose dimensions are indicated in Figure 5b, three different tanks bottom
geometries were tested: flat, sloped and circular bottom shapes (Figure 5c–e). For the
case of the sloped and circular ones, isosceles wedges of 10 cm of side and width of 20 cm
corresponding to the width of the tank. The printed blocks were fixed at the base of the
tank to prevent relative movements between them.
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Figure 5. Experimental apparatus. (a) Scheme of the tanks dimensions (measurements in mm). (b) 3D printed blocks used
to change the bottom shape. Images of the tanks with flat (c), sloped (d) and circular (e) bottom shape.

The base shear force was measured by a strain gauge dynamic load cell placed between
the shaking table (700 × 500 × 20 mm in dimension) and an aluminium plate, having
dimensions of 700× 300× 15 mm, to which the tank is anchored.

3.2. Experimental Tests

The testing matrix consists of 27 different experiments: for each of the 3 different
bottom geometries (Figure 5c–e), 9 different levels of water depth, from 4 to 12 cm, with an
increasing step of 1 cm, were analysed, allowing to investigate the sensibility of the liquid
damping to its volume (mass). The bottom shapes were selected in order to compare and
analyse results and relative behaviours.

In the carried experiments, the tanks were excited with an impulsive kinematic input,
i.e., a little displacement imposed at the base, to make the inner liquid in free oscillations.
In order to analyse the fluid response in a steady-state motion, the initial transient period
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was not considered. The data, sampled for a total duration of 80 s, were acquired with
a fairly high sampling frequency equal to 1 kHz. A postprocessing procedure was then
applied, including a detrend function and a low-pass filter with a cutoff frequency of 5 Hz.

4. Results and Discussion

The dynamic data acquired by the load cell were analysed both in frequency and time
domains. In Figure 6, as a general example, the base shear force time histories for the three
different bottom shapes with a water depth of 7 cm are illustrated. The experimental data
for the base shear force Fbase (light grey line of Figure 6a–c) recall the typical trend of a mass
with a single degree of freedom in free vibration in presence of damping. The analytical
function which describes the amplitude modulation of a free oscillating damped system
(below critical damping) is

Fbase(t) = Ae−ζωwt (16)

where A is the amplitude, ωw is the natural angular frequency and ζ is the damping.

Figure 6. Base force time histories with the calculated enveloping exponential interpolating curves for different bottoming
bases at h = 7 cm.

The power spectra were extracted from the dynamic records of the base shear force in
order to estimate the natural angular frequency ωw, and then the natural sloshing frequency
fw, for the different liquid h/L ratios. Table 1 shows a comparison between the natural
frequencies for the flat bottom tanks f EXP

w obtained as a result of the experimental campaign.
As introduced in Section 2, the experimental results were also compared with the analytical
formulations related to the linear theory (Equation (3)) and the linear long wave theory
(Equation (4)). In the first column of Table 1, aspect ratios are reported. It is clear how their
values, apart from the first two, exceed the limit of validity for the linear theory and yet
the error with respect to Lamb’s expression is under 2% for all the different water depths
showing a very good agreement. This condition might be explained by the intrinsic nature
of the induced sloshing phenomenon under analysis, which might be perfectly compliant
with the standard hypothesis of the linear—shallow waters equations.

The impulsive input induced to the tank to make the liquid in free vibrations, together
with the geometrical features of the tank, produce a liquid motion that recalls the motion of
the iso-potential lines for an irrotational flow, or better put, they generate a set of oscillating
waves that closely follow the solution of the system of equations under the potential flow
conditions, which is, in fact, the starting point for the analytical solution of Lamb’s theory.
On the other hand, the comparison with Deng’s formulation [39] points out two peculiar
aspects. Firstly, relative errors are larger due to the different approach of Deng’s work who
has employed Lagrange’s equations and Morison’s formula together with the method of
virtual work, an approach that shows a higher sensibility to the geometrical parameters.
The second notable aspect is related to the evident increase of the error for water depths
higher than 90 mm, (ratio h/L = 0.225) showing, in this case, the actual relaxation of the
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linear—shallow waters hypothesis, as it is even more evident from Figure 7a. This is a
consequence of the nonlinear effect of amplitude dispersion that, indeed, resembles that of
a hardening spring [33].

Table 1. Comparison between analytical (Lamb and Deng and Tait formulations) and experimental
natural sloshing frequencies obtained with the flat bottom tank.

h/L f LT
w (Lamb) f LW

w
(Deng&Tait) f EXP

w
Err [%]
(Lamb)

Err [%]
(Deng&Tait)

0.1 0.77 0.78 0.76 1.32 2.6
0.125 0.85 0.88 0.85 0.11 2.4
0.15 0.93 0.96 0.92 1.09 4.7

0.175 0.99 1.04 1.01 1.98 2.8
0.2 1.04 1.11 1.04 0.42 6.7

0.225 1.09 1.17 1.10 0.91 6.9
0.25 1.13 1.24 1.13 0.13 9.6

0.275 1.17 1.30 1.16 0.86 11.9
0.3 1.20 1.36 1.19 0.84 13.9

Figure 7. Comparison between analytical and experimental natural sloshing frequencies for flat (a), sloped (b) and circular
(c) bottom shape.

Figure 7 gives a comprehensive picture of the differences between experimental data
and the different closed analytical approaches, including the sloped and circular bottom
geometries, as reported in Figure 7b,c, respectively.

The first thing to be highlighted, similarly to the flat case and as expected, is the
change of trend for all the three bottom geometries, at values of h/L exceeding the limit of
validity of the linear theory. For the flat case (Figure 7a) Lamb’s formulation (Equation (3))
seems to be perfectly fitting the data while Deng’s modified version (Equation (4)) diverges
for h/L > 0.2, as anticipated above in Table 1.

For the case of the sloped bottom, the experimental values of fw have been compared
to the formulations of Ibrahim [16] represented by Equation (13) and the approach of the
wet perimeter proposed by Idir [46] in Equation (12). Both approaches follow a parallel
behaviour together with the experimental data up to h/L = 0.2, showing a maximum
between 0.15 < h/L > 0.175, but Ibrahim’s values (red line) show a fairly big margin of
error, probably due to the fact that the empirical equation does not take in consideration the
losses from the fluid–structure interactions and frictions. Idir’s Equation (12) results showed
a fairly good agreement with the experimental data despite the fact that the approach is
based on the hypothesis of small angles of the divergent section of the corner wedge.

The circular bottom case comparison is probably the most interesting one since shows
two peculiar aspects. On one hand, the experimental fw values have been compared to
Ibrahim’s (also Lamb’s) approach for parabolic bottom shapes [16,45], as in Equation (15),
and the result was an overall small error but, as expected, a general trend weakly correlated
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to the obtained data. On the other, Idir’s approach (Equation (12)) with a wet perimeter
(L′) ad-hoc modified to consider the circular shape of the corner wedges, shows a very good
agreement both in terms of relative error and overall compliance of the trend.

In order to estimate the decay function (red line of Figure 6a–c) characterising the
damping properties, an exponential interpolation of the maxima/minima points was
computed for the different bottom geometries and for each water depth, by extracting the
coefficients C1 and C2 of the equation

Fbase(t) = eC1t+C2 (17)

With reference to Equation (16), the damping ratios ζ were estimated at each level of water
depth and for each cases of bottom geometry, taking into account the natural frequencies
previously extracted.

Figures 8a–c and 9a–c summarise the significant evidences of the carried out experi-
ments, as a sort of matrix of the possible responses of the system composed by structure
and liquid. More specifically, the beating phenomenon can be related to the slope of the expo-
nential decay functions displayed in Figures 8 and 9. Figures 8 and 9 clearly highlight that
the flat bottom is the least responsive to the height change, meaning that its reaction to the
change of water mass is slower if compared to the sloped and the circular bottom shapes.
Furthermore, the sloped one, for heights lower than 10 cm, substantially keeps performing
with the same timing and shows the same delays with respect to the initial impulse.

Figure 8. Exponential decay functions interpolated at different water depths for flat (a), sloped (b) and circular (c) bot-
tom shape.

Figure 9. Comparison of exponential decay functions between the different bottom shapes for water depth of h = 4 cm (a),
h = 7 cm (b) and h = 12 cm (c).
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An overall comparison is depicted in Figures 10 and 11, where the trends of only the
experimental natural frequencies and damping ratios, with respect to the different water
h/L values are represented, respectively.

Figure 10. Natural frequency values vs. water depth ratio for different bottom geometries.

Figure 11. Damping coefficients vs. water depth ratio for different bottom geometries.
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As discussed above, the behaviour of the sloped bottom geometry from the first value
of h/L to h/L = 0.175 initially increases while once the water depth equals the height of
the wedge, its trend bends to finally keep increasing. Indeed, one of the main difficulties in
modelling such an interacting system is the ability to properly define an equivalent mass
actively participating in the overall sloshing process, that is to say having active or passive
effects on the oscillating motion in the fluid–structure interaction. Another fundamental
insight from Figure 10 is again the overall behaviour of the sloped bottom tank. While
the flat and circular cases follow a monotonic increasing trend, the sloped one appears to
be almost constant until the water depth reaches 9 cm. This is due to the fact that until
the water motion is affected by the sloped shape of the bottom side, the sloshing response
remains substantially steady. In this sense, the sloped-bottom behaves like a softening
spring because of the nonlinear effect of the wave run-up onto the sloping surface. This
behaviour plays a crucial role in assessing that the use of slope shaped wedges guarantees
a wider range of force impulses, that is to say a wider possibility to find constant tuning.
Such a geometrical solution for the bottom of the tank results in the best option for a
damping sloshing device.

Evidence of the above description can be found in the fundamental damping effec-
tiveness related to the application of the three different bottom geometries. The damping
mechanism depends on the amplitude of fluid sloshing and wave breaking patterns. The
main driving mechanism of damping is attributable to viscous actions along the boundary
layer near the bottom surface and the side walls of the tank and the sloshing motion of the
free surface layer of the water, from which comes the importance of testing the behaviour
under different bottom geometries. One of the issues, mainly in terms of proper modelling,
is that a damper, deep water is not favourable because a large portion of the water does
not participate in the damping mechanism.

The damping ratio, ζ, is plotted in Figure 11 against water depth ratios. The following
peculiar aspects can be drawn:

• the flat bottom shaped tank base is the least dissipative geometry, while the sloped
one is the most;

• the circular bottom geometry is the most sensitive to the variation of the volume
(mass) of water;

• only the sloped bottom seems to show a slightly concave trend with respect to the
x-axis.

The first result was expected as anticipated and widely reported in literature [16,20,33].
The circular shape facilitates the liquid motion and, as a consequence, the mass of water
interferes with the optimal tuning, depending on the liquid depth, producing alternatively a
higher or lower dissipation. One interesting point concerns the fact that the flat and circular
shapes exhibit a convex, flattening behaviour with the increasing water depth, whilst this
is not observed for the sloped one. In terms of damping potential, the sloped bottom has a
stronger sensitiveness to liquid mass, showing that this type of bottom geometry might
affect the motion of the mass of water even at heights greater than the wedge vertical
dimension. These considerations lead to the evidence that the sloped geometry might
appear to have a contrasting behaviour: it has a more dissipative behaviour but it also
shows a reaction delay with respect to the driven impulsive force. This "relaxation" in time
can be seen as a consequence of the beating phenomenon that, in turn, can give an actual
measure of the responsiveness of the overall system of liquid mass + structure.

5. Conclusions

In this paper the results of an experimental study on the characteristics of the free
motion of water in prismatic sloshing devices with different bottom shapes have been
presented. The performed experimental campaign consisted of a series of tests on a tank
filled with water at nine different depths and each case tested for three different bottom
geometries, namely flat, sloped and circular. The tank was subject to an impulsive random
force and data about the related displacement and the dynamic inertia force have been
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acquired and processed in order to characterise the oscillating motion of the filling liquid
and to focus on the so called “beating phenomenon”. Since the interest was in the natural
sloshing frequency and damping features, including the beating phenomenon, the sole
measurement of the base shear force was deemed sufficient for the purpose of the work.
Thence, further understanding of the free water surface dynamics considering different
bottom geometries is left for future work.

Mechanical models of tanks filled with water in motion resemble the classical mass-
spring-damper system and from this point of view equations to obtain natural frequency
values have been formulated. An important objective of this work was to compare the
equations outcomes with the experimental results and evaluate the effectiveness of such
theoretical approaches to actual laboratory cases, even in the circumstance of aspect ratios
(h/L) higher than those allowed by the linear wave theory and in order to assess the validity
of classical methods for practical tuning procedures. Furthermore, damping behaviour has
been investigated considering the related aspect of the beating phenomenon.

Experimental natural frequency values for the box-shaped tank have shown a very
good agreement with the corresponding values from Lamb’s linear wave theory with a
percentage error always under 2% for all the water depth ratios tested. The relative error
was higher when compared with Deng’s formulation because of the different theoretical
approach which was more affected by the variation of liquid mass.

For the other two bottom shapes, namely sloped at 45◦ and circular, the best analytical
approach resulted to be the one proposed by Idir that, starting from the linear wave theory
of Lamb and simplifying the wave dynamics equation with a small angles hypothesis,
retrieved a modified expression for the natural sloshing frequency employing the wet
perimeter. A further modification was to adapt the wet perimeter defined solely for
wedged corners also for the case of the circular one.

The sloped shaped bottom showed a steady behaviour throughout all the nine different
liquid depths with a slight increase of the oscillating frequency only for water heights over
9 cm. This result is notable as it demonstrates that the sloped shape is the most robust with
respect to the frequency “mistuning” that may be caused by varying water levels as it may
happen in water storage tanks used for passive structural control purposes.
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