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Abstract. In this paper, we address a problem in the field of hydraulics
which is also relevant in terms of sustainability. Hydraulic jump is a
physical phenomenon that occurs both for natural and man-made rea-
sons. Its importance relies on the exploitation of the intrinsic energy
dissipation characteristics and on the other hand the danger that might
produce on bridges and river structures as a consequence of the interac-
tion with the large vortex structures that are generated. In the present
work, we try to address the problem of estimating the hydraulic jump
roller length, whose evaluation is inherently affected by empirical errors
related to its dissipative nature. The problem is approached using a re-
gression model and exploiting a dataset of observations. Regression is
performed by minimising the loss function using ten different black-box
optimisers. In particular, we selected some of the most used metaheuris-
tics, such as Evolution Strategies, Particle Swarm Optimisation, Differ-
ential Evolution and others. Furthermore, an experimental analysis has
been conducted to validate the proposed approach and compare the ef-
fectiveness of the metaheuristics.

Keywords: Metaheuristics · Hydraulic jump roller length · Regression
· Continuous optimisation · Sustainability

1 Introduction

River flow dynamics [1, 2, 10] falls under the category of very complex flow evo-
lution, which includes the widest diversity of flow. Such processes are the main
damage to river crossing structures.

In the 16th century, the great Leonardo Da Vinci observed a visible increase
in height in a flowing liquid and, while documenting this phenomenon, associated
its occurrence with an abrupt velocity change of its flow from high speed to lower
speed. Only later, in the 1800s, Professor Giorgio Bidone (University of Turin)
gave a mathematical formulation to the generic description of his illustrious
predecessor.
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The phenomenon Hydraulic Jump is a physics problem that has been studied
for centuries due to the societal, optical, and technological implications that its
solution can bring in terms of sustainability and resilience. Italy is a perfect
case study to show this potential, as this country has a territory rich in large
rivers and smaller watercourses, creeks, and brooks. However, structures such as
bridges and embankments that often date back to decades had poor maintenance
over the years. Recently, a consortium of universities named “FABRE” has been
created to map and assess the health status, as well as to monitor the procedural
schemes of hundreds of bridges to implement emergency recovery interventions.

Among the many dangers that affect bridge piers, the hydraulic jump is
one of the most common, as it is intrinsically linked to the nature of the flow
and its regime. In this article, we propose an approach based on a learning
algorithm optimised with a heuristics technique to evaluate the hydraulic jump
characteristics and tackle this problem.

Hydraulic jump is a phenomenon generated by a change in the flow regime
from supercritical to subcritical, accompanied by high energy dissipation lead-
ing to an increase in the depth of the flow, as shown in Figure 1a. The increase
in dissipation is due to the development of a complex multi-fold turbulent flow
structure that causes significant energy losses. Often, hydraulic jump charac-
teristics, analogously to what happens in compressible flow dynamics with the
occurrence of shock waves, are affected by the presence of external elements such
as obstacles downstream, typically bridge piles, and above all, the characterisa-
tion of the bed roughness (see Figures 1a and 1b).

As in the premisis, hydraulic jumps have been broadly investigated both due
to their frequent occurrence in nature and their potential risk for man-made
fluvial structures and, on the opposite front, for their possible use as energy
dampers for hydraulic structures themselves [15].

From the seminal work between the end and the beginning of the 19th cen-
tury in terms of both analytical [4, 27] and experimental [31] aspects, the an-
alytical form of the characteristics of the hydraulic jump originates from the
equation of momentum balance. The early works cited considered the friction
forces negligible compared to the others. In subsequent investigations [24] a more
generalised study was conducted that included consideration of a more realistic
velocity distribution and, therefore, partially took into account the resistance of
the boundaries. Rajaratnam [23], Hughes and Flack [19] and Hager and Bremen
[16, 14] went a little further by implementing the bed shear stress directly from
the expression of the momentum equation. Since then, the main issue still is rep-
resented by the definition of this ”friction term” related in a general sense to the
bottom shear stress, but as a matter of fact strictly depending on the different
feature of the bottom surface and the flow regime. Quite recently researchers
have made a specific effort trying to assess the implementation of the effects
of the bed roughness both empirically [11, 5, 6] and by using teaching-learning-
based optimisation techniques [20, 13] always distinguishing between the two
main characteristics of the hydraulic jump, namely the ”Sequent Depth ratio”,
which is the ratio between the two cross sections with successive depths h1 and
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h2 as in fig. 1b and the ”Roller Length”, defined as the horizontal distance be-
tween the toe section with the flow depth h1 and the roller end corresponding
to the cross section h2. A more specific and mathematically detailed description
of those hydraulic jump flow characteristics will be given in the next section.

The scope of the present work is to focus on the Roller Length evaluation,
estimating it via a novel form of the roughness contribution, modelled from the
”shape” of the roughness function derived from the turbulence charts of the
Nikuradze-type diagram [3]. Practically, we design a regression function with
unknown parameters, which will be fitted to a dataset of observations by min-
imising a loss function through a black-box optimiser. In particular, we con-
sidered ten popular metaheuristics for black-box continuous optimisation and
experimentally compared them through a repeated cross-validation approach.

2 Hydraulical aspects

The description given in section 1 shows how, due to the inherently dissipative
nature of the hydraulic jump phenomenon, the analytical definition of some
of its peculiar features is very difficult to obtain and empirical relations are
needed based on the principles of the dimensional analysis. In what follows, a
brief description of the characteristics of this phenomenon is presented from the
hydraulic point of view.

2.1 The hydraulic jump over a rough surface

The hydraulic jump phenomenon generates a characteristic large vortex, or more
correctly a roller whose length is directly proportional to the intensity of the
phenomenon itself. The length of the roller can be defined as the horizontal
distance between the toe section with height h1 and the section where the roller
ends with height h2 as shown in Figure 1b.

(a)
(b)

Fig. 1: (a) Hydraulic jump physical schematics and (b) hydraulic jump roller
length main characteristics.

Its length can be fairly easily evaluated in experimental tests visualising the
flow and its free surface and measuring it, but it is still hard to determine it
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a priori by modelling a functional relation, especially considering the effects of
the roughness of the bed. More rigorously, we can identify a dependence of the
roller length Lr of the following type:

Lr = F (ks, g, h1, h2, U1, µ), (1)

where: ks represents the roughness height at the bottom, expressed in cm; g
is the gravitational acceleration; h1 and h2 are, respectively, the depths of the
upstream and downstream flow, considering the transition from the supercritical
(upstream) to subcritical (downstream) regime; U1 is the mean flow velocity of
the upstream cross section; while µ is the kinematic viscosity of the fluid.

Taking advantage of the bases of dimensional analysis, we can reduce the
number of independent variables obtaining the following:

Lr

h1
= f0

(
ks
h1

,
U1h1

µ
,
h2

h1
,

U1√
gh1

)
. (2)

The a-dimensional group U1√
gh1

is called the “Froude number” (Fr) and rep-

resents the relationship between the flow inertial forces and the external grav-
itational field. It serves as an indicator of the transition between the differ-
ent flow regimes, namely subcritical, critical, and supercritical, respectively, for
Fr < 1, Fr = 1, and Fr > 1. Another ratio between forces acting within the
flow, and precisely against inertial forces and viscous ones, is represented by
the “Reynolds number” (Re), indicated by the fraction U1h1

µ which defines the
transition from laminar to turbulent regime. In this case, since the Reynolds
number is relative to the upstream cross section by the velocity U1, it is taken
for granted that it is in the presence of a fully developed turbulent flow, leading
to the possibility of ignoring the viscous effects and hence the dependence on
the Reynolds number itself. Therefore, the final form of the functional relation
will be:

Lr

h1
= f

(
ks
h1

,
h2

h1
, F r1

)
, (3)

where the ratio h2

h1
is defined as ”Sequent Depth Ratio” (SDR) and we directly

denote the Froude number with the subscript “1”, pointing out that it refers to
the upstream flow.

2.2 Definition of a roughness height modelling function

Many have tried for almost a century now to propose valid analytical forms for
the relation (3), starting from the very well-known equation for SDR:

h2

h1
=

1

2

(
−1 +

√
1 + 8Fr21

)
, (4)

obtained in 1828 by the French hydraulic engineer Jean-Baptiste Bélanger from
the momentum balance equation. It appears clear right away how this equation
does not imply the presence of a rough bottom, hence explicitly, of a shear stress.
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Its generalisation including a direct dependence from the velocity distribution
was given by Govinda et al. in 1966 [24]:

h2

h1
=

1

2

(
−1 +

√
1 + αFr21

)
, (5)

where α also takes into account the condition of zero velocity at the bottom.
To integrate the action of bed shear stress, some authors (Carollo and Ferro,

in 2004 [5, 6]) have included empirical parameters and, starting from the mo-
mentum balance equation, also proposed the following equation

h2

h1
=

1

2

(
−1 +

√
1 + 8(1− β)Fr21

)
, (6)

where β is empirically defined as β = 0.42 ks

h1
, Although both α and β are related

to the friction of the bed, the first through the velocity profile and the latter
through the presence of the height of the roughness of the bed ks.

Regarding the roller length Lr, Smetana in 1937 was the first to propose a
direct correlation with the subsequent depth.

Lr

h1
= 6

(
h2

h1
− 1

)
. (7)

Hager et Al. [14], via an experimental campaign, suggested the following
relation for highly supercritical flows:

Lr

h1
= 8(Fr1 − 1.5). (8)

In both the above studies, the proportionality with SDR and Fr is suggested,
but in neither case is there any dependence on the roughness of the bed. Hughes
and Flack in 1984 [19], Ead and Rajaratnam in 2002 [11] and Carollo and Ferro
in 2004 [5], verified the possibility to include such a relation via an empirical
coefficient. In particular, taking into consideration both the sequent depth and
the Froude number, Carollo and Ferro proposed the following.

Lr

h1
=

a(
h1

h2

)1.272 (9)

Lr

h1
= b(Fr1 − 1). (10)

where the constants a and b, as expected, directly depend on the roughness of
the bed. In 2007 the same authors, as a result of an experimental campaign,
were appointed. found specific values for empirical coefficients, explicitly linking
the roller length Lr to Fr1 and ks and simultaneously Lr to SDR, h2/h1.

Karbasi followed similar relationships, but with a different approach, in 2016
[20]. He proposed a teaching-learning-based optimisation algorithm to test differ-
ent regression functions in order to find optimised values for empirical parameters
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to relate, in this case, the roller length Lr with Fr1 and h2/h1, leaving out the
explicit dependence on the roughness of the bed ks.

In this work, we propose a dimension-based approach where the relation (3)
is fully represented using both the results reported above and an evaluation of
the roughness of the bed derived from considerations relative to the transition
process between a smooth regime and a fully rough one. In the former condition,
completely hydraulically smooth, viscosity acts as a damper and cancels out any
perturbation caused by the roughness, while in the latter condition, it is the
pressure drag on the rough surface that totally leads the process and produces
friction. In the middle of these two regimes, a transitional phase occurs where
the two processes are present. In order to grossly capture the complex physics
described, a modelling function is suggested by Andersson [3] who basically
reports the Nikuradse turbulence diagrams in the form of a wall function.

The original idea was to implement such a function, adjusting some of its
terms, to the general form of the relation (3). The proposed roughness function
equation is as follows:

ϕ =


0 if k+s ≤ KSM

1
ks

ln[Csk
+
s ] sin

(
π
2

ln k+
s −lnKSM

lnKR−lnKSM

)
if KSM ≤ k+s ≤ KR

1
ks

ln[Csks] if k+s > KR,

(11)

where the new constants introduced here are KSM and KR (respectively, “K
smooth” and “K rough”) that represent the lower and upper bound of the transi-
tionally rough regime. According to literature they have been set as KSM = 2.25
and KR = 90. The variable calculated k+s is the so called “Roughness Reynolds
number” defined as k+s = (ksU1)/ν with the viscosity of water ν = 0.00131 kg/ms.
The constant Cs, called the “Roughness constant” is a numerical re-tuning co-
efficient and was set at Cs = 0.5. To retrieve the mean flow velocity of the cross
section U1, we used the experimental data set extracted from the 2007 work of
Carollo and Ferro [7]. In particular, from the values of the Froude number we
can compute U1 as follows:

U1 = Fr1 ·
√
gh1 (12)

to be inserted in Equation (11).
The idea behind the choice of the type of function (11) was made to best

resemble the shape of the functional trend of the roughness function in the
three ranges defined by the Froude number, emulating the behaviour of the wall
friction function.

By plugging Equation (11) into Equation (3), also taking into consideration
Equations (9) and (10), we can derive our estimate for the roller length as

follows.
Lr

h1
= a1 · ϕ+ a2 ·

h2

h1
+ a3 · (Fr1 − 1.5), (13)

where the vector a ∈ R3 represents three parameters imposed by the design and
whose values can be learnt from the data.
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3 The Learning Scheme

The roller length estimation function introduced in Equation (13) requires one to
identify the values for the parameter vector a ∈ R3. With this aim, we can exploit
the dataset of observed values provided in [7] in order to learn the a parameters.
Therefore, we treat Equation (13) as a regression function and we apply the
definition of the parameters a to a regression problem.

We denote by x ∈ R4 the vector of the following four values: x1 = ks, x2 = h1,
x3 = h2, and x4 = Fr1. By also noting that ϕ, as defined in Equation (11), is a
function of ks, h1 and Fr1, we will use the notation ϕ(x1, x2, x4). We can now
define the regression function for the roller length as

ga(x) = a1 · ϕ(x1, x2, x4) + a2 ·
x3

x2
+ a3 · (x4 − 1.5). (14)

Furthermore, we denote by y ∈ R the roller length values contained in the
data set, that is, y = Lr/h1. Therefore, the data set D considered in this work
3 is a set of pairs (x, y) as follows.

D =
{
(x, y) : x ∈ R3 and y ∈ R

}
. (15)

It is now clear that the parameters a can be learnt by minimising the following
loss function.

f(a) =
∑

(x,y)∈T⊆D

(ga(x)− y)
2
, (16)

where the training samples in T are a suitable subset of the entire data set D,
which contains a total of 367 observed data samples.

4 Black-Box Optimisers

The loss function introduced in Equation (16) can be minimised by any black-
box optimiser. In this section, we describe the ten metaheuristics considered in
this work.

4.1 Random and Quasi-random Search

Trivial random search procedures are considered in this work as baseline meth-
ods. In particular, we denote by RS the random search procedure which gen-
erates a given number of solutions uniformly at random and, after evaluating
them all, selects the best one. Similarly, we also consider the Scrambled Ham-
mersley Search (SHS) method [8] which generates a quasi-random sample of
low-discrepancy vectors that homogeneously cover the search space. Although
being trivial, RS and SHS are interesting baseline methods for two reasons: all
the solutions can be evaluated in parallel (at least in principle), and they allow
us to derive indications about the smoothness of the search landscape at hand
by comparing their effectiveness with that of other smarter algorithms.

3 The data set is available with the supplementary data at
https://doi.org/10.5281/zenodo.7595510.
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4.2 Simple Evolution Strategies

Evolution strategies [33] are a family of evolutionary algorithms that evolve
one or more incumbent solutions by means of one or more genetic operators.
In this work we consider two simple evolutionary strategies which adopt the so-
called (1+1) search scheme, i.e., they maintain a single incumbent solution which
is iteratively mutated and the generated mutant becomes the new incumbent
solution if and only if it is fitter than it.

Given the incumbent solution x ∈ Rd, a mutant y ∈ Rd is generated as
yi ← xi + εi, for any dimension i = 1, . . . , d. In this work we term with the
acronyms ES and CES the evolution strategies which perform the perturba-
tion according to, respectively, a normal distribution or a Cauchy distribution
(which is a fat-tailed variant of the normal distribution). More formally, we have
εi ∼ N(0, σi) in ES, and εi ∼ C(0, γi) in CES. In our experiments we adopt
the default configurations of the ES and CES implementations provided in the
Nevergrad library [25], which sets σi = γi = 1 for any dimension i = 1, . . . , d.

4.3 Covariance Matrix Adaptation Evolution Strategies

One of the most sophisticated forms of evolution strategies is the evolution strat-
egy of covariance matrix adaptation (CMA) [17].

Unlike the simple evolution strategies previously described, the CMA main-
tains three entities: a mean vector m ∈ Rd, a covariance matrix C ∈ Rd×d, and
a step-size vector σ ∈ Rd. In each iteration, N solutions are sampled from the
(possibly) multivariate normal distribution N(m,σC). The solutions are then
weighted on the basis of their fitness, and then used to update m, C and σ. For
further details, we point the interested reader to [17].

In this work, we consider two standard implementations of this algorithm,
namely CMA and DCMA: The former uses a multivariate covariance matrix,
while the latter maintains a simpler diagonal covariance matrix. Furthermore,
the CMA and DCMA implementations provided in the Nevergrad library [25]
are adopted with their default configurations.

4.4 Differential Evolution

Differential Evolution (DE) [29, 28] is a population-based evolutionary meta-
heuristic which was originally proposed in [32].

The DE population is made up of N d−dimensional vectors x1, . . . , xN that
can be uniformly initialised at random or by using a quasi-random generator
such as the Scrambled Hammersley procedure that produces a low discrepancy
sample of vectors [8]. In this work we adopt both initialization variants, which
are referred to as, respectively, DE and QrDE.

The key operator of the algorithm is the differential mutation that, for each
population individual xi ∈ Rd, produces a mutant vector vi ∈ Rd as a linear
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combination of some other population individuals. One of the most popular DE
mutation strategy is named “current-to-best” and is defined as

vi ← xi + F1(xbest − xi) + F2(xr1 − xr2), (17)

where: xbest is the best population individual so far, F1 and F2 are the two scale
factor hyperparameters of DE, and xr1 , xr2 are two randomly selected population
individuals which are different between them and with respect to xi.

After the mutation, the vector vi is recombined with xi. The most com-
mon recombination operator is binomial crossover that generates a trial vector
yi ∈ Rd by selecting each vector component from either vi, with probability
CR, or xi, with probability 1 − CR. The crossover probability CR ∈ [0, 1] is a
hyperparameter of the algorithm. Finally, if vi is fitter than xi, it replaces xi in
the next iteration population.

In our experimentation we adopted the default configuration of the DE im-
plementation provided in the Nevergrad library [25], i.e., N = 30, F1 = F2 = 0.8,
CR = 0.5.

4.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [30] is one of the most famous metaheuristic
based on swarm intelligence principle, firstly proposed in [21].

PSO maintains a population of N particles. Each particle has a position
xi ∈ Rd in the solution space and a velocity vi ∈ Rd. The particles are statically
connected among them, usually by means of a global topology.

As in DE, the population is evolved during a given number of iterations. At
each iteration, the j-th component of xi is updated according to

vi,j ← ωvi,j + c1r1,j(pi,j − xi,j) + c2r2,j(gj − xi,j), (18)

xi,j ← xi,j + vi,j , (19)

where: pi, g ∈ Rd are, respectively, the best position ever visited by particle i
and the global best position ever visited by the whole swarm; ω, c1, c2 ∈ R+

are the so-called intertial, cognitive and social hyperparameters of PSO; while
r1,j , r2,j ∈ R are randomly generated numbers in [0, 1].

In our experimentation we adopted the default configuration of the PSO
implementation provided in the Nevergrad library [25], i.e., N = 40, ω = 0.72,
c1 = c2 = 1.19.

4.6 Nelder-Mead

Nelder-Mead (NM) [12] is a mathematical optimization methodology which iter-
atively updates a simplex of d+1 vertices in the solution space. At each iteration,
the simplex is updated by trying to replace the worst vertex with a new better
solution obtained by means of four operations termed as reflection, expansion,
contraction, and shrink. We refer the interested reader to [12] for their definitions.

In our experimentation we adopt the standard implementation of NM as
provided in the Nevergrad library [25].
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5 Experiments

5.1 Experimental setup

In order to analyse the proposed methodology, we conducted an experimental
comparison among the ten black-box optimisers described in Section 4. Following
the learning scheme described in Section 3, we have performed a k-fold repeated
cross-validation [22], where the number of repetitions is r = 10 and the number
of folds is k = 3. Then, for all r ·k = 30 cross-validation rounds, each algorithm is
executed s = 10 times with a budget of 10 000 objective evaluations. Therefore,
a total of r · k · s = 300 executions per algorithm were performed.

In any single execution, an algorithm evaluates the loss function by access-
ing only the data from the training set for the current cross-validation round.
However, the optimised a values returned by the algorithm are used to evaluate
the regression function on the data of the current test set, thus allowing one to
compute the mean percent relative error (MPRE) as follows.

MPRE = 100 · 1
n

n∑
i=1

|ŷi − yi|
yi

, (20)

where: ŷi = ga(xi) is the predicted value computed based on the learnt values
a and the observed input data xi from the test set, yi is the observed output
value of the test set, while n is the number of samples in the test set. With
slight abuse of notation, we also denote by MPRE the average mean percentage
relative error of an algorithm in all cross-validation rounds. Moreover, we may
also use the same measure related to the training set data, but in these cases we
will clearly specify that.

The implementations of the selected algorithms available in the popular
Python library called Nevergrad [25, 26] (version 0.5.0, the latest one at the
time of writing) were adopted with their default parameters’ settings. For the
sake of reproducibility, in Table 1 we provide for each algorithm the name of the
corresponding Nevergrad class.

Table 1: Names of the Nevergrad classes corresponding to the algorithms adopted
in this work. The acronyms of the algorithms are defined in Section 4.

Algorithm’s acronym Nevergrad’s class

ES OnePlusOne
CES CauchyOnePlusOne
CMA CMA
DCMA DiagonalCMA
DE DE
QrDE QrDE
PSO RealSpacePSO
NM NelderMead
RS RandomSearch
SHS ScrHammersleySearch
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5.2 Experimental results

First, to validate our approach, we compare the training and test errors of the a
values learnt by any single execution of all algorithms considered. In this regard,
in Figure 2 we provide a scatter plot where: the abscissa and ordinate axes
represent the percentage relative error on, respectively, the training and test
data, any blue point in the graph is the result of a single algorithm execution,
while the regression line through the points is drawn in black.
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Fig. 2: Correlation between the mean percentage relative training and test errors.

Figure 2 clearly shows that training and test errors are strongly correlated
– their Paerson correlation coefficient is 0.99 –, thus validating our approach for
learning the regression parameters.

In Table 2 we provide all the statistics about the MPREs – evaluated on
the test data – of the best solutions obtained by the ten algorithms in all their
executions. The algorithms are ordered by median MPRE and the best results,
for each statistic, are provided in bold.

To statistically validate the results, we also performed a statistical analysis
on the test MPREs obtained by the algorithms. The omnibus Kruskal-Wallis
test [9] rejects the equivalence of effectiveness among the five algorithms with
a practically zero p-value (around 10−303). Therefore, a Conover post hoc test
has been performed considering the Benjamini-Hochberg adjustment scheme to
mitigate the statistical family error rate [18]. The Conover p-values of the com-
parison between ES and all other algorithms are also provided in Table 2.

Table 2 shows that the eight proper algorithms are clearly better than the
two baselines RS (random search) and SHS (a quasi-random sampling method).
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Table 2: Statistics about the MPREs evaluated on the test data.

Statistics on the MPREs
Algorithm median pvalue mean std min max

ES 8.27 – 8.18 0.64 6.92 9.18
CES 8.28 0.98 8.18 0.63 6.95 9.16
PSO 8.29 0.90 8.17 0.62 7.10 9.10
NM 8.30 0.14 8.64 2.26 7.12 20.30
QrDE 8.30 0.53 8.24 0.71 6.73 11.26

CMA 8.31 8e-03 9.48 5.38 7.12 53.61
DCMA 8.32 0.02 9.44 5.00 7.01 40.21
DE 8.37 2e-03 8.88 2.72 6.89 30.11
SHS 41.84 6e-172 40.01 5.34 30.76 49.58
RS 42.13 6e-184 42.42 13.00 9.88 70.87

Moreover, the largest group of algorithms that are not significantly better –
under the usual threshold of α = 0.05 – than each other is made up of five
algorithms, namely: ES, CES, PSO, NM and QrDE. Among these five algo-
rithms, ES, CES, and PSO have a higher degree of robustness, as indicated by
the standard deviation, minimum, and maximum of their MPREs. Their average
MPRE is around 8.17% / 8.18%. The other statistics also show that these three
algorithms are practically equivalent among them. Therefore, our main conclu-
sion is that the two variants of the simple evolution strategy (ES and CES) and
the PSO algorithm are to be preferred over the other competitors for the task
under examination.

To provide a clearer picture, Figure 3 shows the box plot graph of the test
MPREs obtained by the 300 executions of each algorithm.

Figure 3 mostly confirms the indications previously discussed. In fact, ES,
CES and PSO are the only three algorithms which do not have outliers in the
graph. This aspect is of particular interest by considering that the ordinate
axis is on log scale. Moreover, it is also interesting to observe that the two
baseline random search schemes (SHS and RS) are significantly worse than all
the other approaches. This suggests that the search landscape of the optimised
optimisation problem designed has a structure that is not chaotic.

For the sake of completeness, all pairwise comparisons among the algorithms
considered are synthesised in the heat map of Figure 4. The entries are greenish
or reddish when the row-algorithm is, respectively, better or worse than the
column-algorithm. The green or red grades are set on the basis of the adjusted
Conover p-values, which are also provided in the entries.

Figure 4 is a further confirmation of the conclusions derived, but also pro-
vides some additional indications as follows. The two covariance-based evolu-
tion strategies CMA and DCMA appear to be less effective than their simpler
“cousins” ES and CES. We conjecture that this is probably due to the small
search-space dimensionality of the problem under investigation. The plain DE
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Fig. 3: Boxplot showing the distribution of the MPREs evaluated on the test
data.

CES CMA DCMA DE ES NM PSO QrDE RS SHS

CE
S

CM
A
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Fig. 4: Conover pvalues of all the pairwise comparisons among the algorithms.

is less effective than QrDE, suggesting that a quasi-random initialisation may
improve the resilience to local optima in the DE search scheme.

As a last analysis, for each algorithm – with the exception of the two random
search methods RS and SHS – we computed all pairwise Euclidean distances
among the 300 a vectors obtained by the different executions carried out in the
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experimentation. Hence, the maximum Euclidean distances of all algorithms are
provided in Table 3.

Table 3: Maximum Euclidean distance observed among the 300 solutions ob-
tained by the different executions.

Algorithm CES CMA DCMA DE ES NM PSO QrDE

Max distance 0.67 4.48 4.19 13.39 0.85 6.47 0.48 3.81

These data confirm that the most robust methods in terms of MPRE, i.e.,
ES, CES and PSO, are also the most robust methods when analysed in the
search space dimensions. In fact, also noting that the search space range was
[−50,+50]3, the maximum distance between the solutions produced by the 300
independent executions is much less than 1.

Finally, for reproducibility purposes, the source code, the full experimental
results and the scripts used for the analysis were made publicly available at the
following location: https://doi.org/10.5281/zenodo.7595510.

6 Conclusion and future work

We proposed a computational approach to a challenging hydraulic problem with
important implications in terms of sustainability.

A contribution of this study is the newly proposed function for estimating
the roller length of the typical hydraulic jump problem in water courses. This
is designed so that the required parameters for evaluating can be learnt from
observed data following a regression approach.

Furthermore, we show the minimisation process of the corresponding loss
function with the aid of ten tested state-of-the-art black-box optimisation algo-
rithms. To facilitate the activity of hydrology practitioners and researchers who
may not be familiar with these methods, we used established algorithms with
open implementation and ready to use from a well-known library [25]. The se-
lected algorithms are from different families, such as simple and covariance-based
evolution strategies, differential evolution variants, particle swarm optimisation,
mathematical optimisation methodologies, and simpler random or quasi-random
one-shot optimisers.

With a thorough experimental and validation phase, we show that the pro-
posed approach is robust and effective in terms of the mean percentage of relative
error.

Moreover, this investigation allows us to recommend the use of (1+1) evo-
lution strategies (based on both normally and Cauchy distributed mutations)
and particle swarm optimisation algorithms over other methods when using the
proposed framework. Indeed, amongst the algorithm under investigation, these
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two classes guaranteed the best balance of both effectiveness and robustness for
the problem at hand.

We believe that this is a promising starting point for further research, and
we envisage investigating different regression functions, possibly exploiting in-
terpretable machine learning models, in the future. Also, potential ways forward
are in the direction of analysing the fitness landscape induced by the regression
function and extending the approach to other related problems in the hydraulic
field.
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