
Citation: Santucci, V. An Iterative

Optimization Algorithm for Planning

Spacecraft Pathways Through

Asteroids. Appl. Sci. 2024, 14, 10987.

https://doi.org/10.3390/

app142310987

Received: 25 October 2024

Revised: 5 November 2024

Accepted: 13 November 2024

Published: 26 November 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Iterative Optimization Algorithm for Planning Spacecraft
Pathways Through Asteroids
Valentino Santucci

Department of International Social and Human Sciences, University for Foreigners of Perugia,
06123 Perugia, Italy; valentino.santucci@unistrapg.it

Abstract: In this article, we explore the use of meta-heuristic algorithms for costly black-box permuta-
tion optimization problems. These combinatorial problems are defined by solution spaces that consist
of permutations of elements, with an objective function that lacks a closed mathematical representa-
tion and is expensive to evaluate. The focus of our investigation is the Asteroid Routing Problem
(ARP), which seeks to determine the optimal sequence of asteroids to be visited by a spacecraft while
minimizing energy consumption and travel time. Specifically, we assess the performance of a simple
algorithm called FAT-RLS, which primarily relies on a randomized local search approach, enhanced
with a tabu structure and a mechanism to adjust the perturbation strength. We conducted a series of
experiments on well-established instances of the ARP to compare the effectiveness of FAT-RLS against
two recognized meta-heuristics designed for this problem, namely, UMM and CEGO. Experiments
were conducted in both uninformed and informed settings, where the meta-heuristics are initialized
with a specifically designed constructive algorithm for the ARP. The results demonstrate that FAT-RLS
is consistently superior to UMM, while there is no conclusive evidence for the comparison with
CEGO, though the FAT-RLS results seem slightly better.

Keywords: combinatorial optimization; Asteroid Routing Problem; randomized local search

1. Introduction and Related Work

Costly black-box optimization poses significant challenges across various fields, includ-
ing engineering and finance, as it involves problems where the objective function does not
have an explicit formal representation and demands considerable computational resources
in terms of time, memory, or monetary cost. In these cases, algorithms can only learn
knowledge about the problem by performing multiple evaluations of the objective function.
However, because typically these evaluations are expensive, the algorithms often face strict
computational budget limitations, thus restricting the number of allowable evaluations.

For continuous variables, Bayesian optimization methods are frequently employed,
as discussed in [1,2]. These techniques build a surrogate model of the objective function,
usually using a Gaussian process or a Kriging model, in an iterative manner. By performing
a large number of computationally cheap evaluations of the surrogate function, they
identify potential candidate solutions, which are then tested against the actual objective
function. Therefore, the true evaluations have a twofold purpose. On one hand, they allow
the discovery of solutions of the problem at hand, and on the other hand they are used to
improve the surrogate model for the next iteration. This strategy minimizes the need for
expensive evaluations and enables the use of traditional optimization techniques that rely
on the surrogate model for guidance.

In this study, we deal with a category of combinatorial optimization problems known
as permutation problems, where solutions consist of permutations of elements from a
specified set [3,4]. Specifically, we examine a recently introduced black-box permutation
optimization problem, the Asteroid Routing Problem (ARP), presented by López-Ibáñez
et al. in [5].

Appl. Sci. 2024, 14, 10987. https://doi.org/10.3390/app142310987 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app142310987
https://doi.org/10.3390/app142310987
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1483-7998
https://doi.org/10.3390/app142310987
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app142310987?type=check_update&version=1

Appl. Sci. 2024, 14, 10987 2 of 17

The ARP is inspired by the 11th Global Trajectory Optimisation Competition (for more
details, see the official competition webpage athttps://sophia.estec.esa.int/gtoc_portal/
?page_id=782, accessed on 10 November 2024) and involves a spacecraft that, after being
launched from Earth, has to visit a given set of asteroids while minimizing both energy
consumption and the total time required. Although this study does not focus on the
astrophysical details of the problem, it is important to highlight that the ARP’s primary
motivation is linked to the growing demand for technological devices, such as mobile
phones and computers, which is causing a rapid depletion of Earth’s mineral resources like
silicon, boronite, and quartz. As a result, asteroid or near-Earth object mining is emerging
as a potential solution to address the scarcity of such mineral resources.

Interestingly, the ARP is just one of many computational optimization problems related
to space engineering. Closely related problems are active debris removal, which has been
described in [6], and the design of rendezvous tours through the Sun–Jupiter asteroid,
depicted in [7]. Other variants of the well-known Traveling Salesman Problem have been
proposed for minimizing the energy and time required for on-orbit servicing [8], and for
optimizing debris selection and trajectories in debris collecting missions [9].

From a computational point-of-view, the ARP is a permutation optimization problem
where evaluating the objective function necessitates executing a computationally expensive
procedure. This makes the ARP an interesting benchmark for costly black-box permutation
optimization. Other related benchmark problems have been proposed in [10] and as
competition challenges by the European Space Agency (ESA), as reported, e.g., in [11–14].
Moving out from the field of space engineering, other related problems are fourth-party
logistics [15] and the schedule risk control problem of IT outsourcing projects [16].

Given the combinatorial nature of the ARP, traditional Gaussian-based Bayesian
optimization techniques are not applicable. In [5], two specialized algorithms were used
to tackle the ARP: (i) CEGO (Combinatorial Efficient Global Optimization)a distance-
based Bayesian optimization method tailored for combinatorial problems; and (ii) UMM
(Unbalanced Mallows Model) an estimation distribution algorithm specifically designed
for costly permutation optimization problems.

Though CEGO and UMM are, to the best of our knowledge, the only algorithms that
have been applied to the ARP, it is interesting to mention other algorithmic approaches
for related space trajectory optimization problems, such as the Ant Colony Optimization
variant proposed in [10], the tree search methods considered in [12,17], a reinforcement
learning approach introduced in [18], the multi-agent genetic algorithm used in [19], and
the integer linear programming approach considered in [20].

Santucci et al. [21] recently proposed a simple yet effective approach to permutation
optimization problems, termed FAT-RLS, that outperformed both UMM and CEGO when a
low budget for evaluation was considered. However, FAT-RLS was applied to standard
permutation problems such as the Linear Ordering Problem and the Permutation Flowshop
Problem. Therefore, the goal of this work is to investigate the application of FAT-RLS to a
real costly permutation optimization problem, such as the ARP.

The remainder of the article is structured as follows. Section 2 introduces permutation
problems along with other preliminary concepts. The computational details of the ARP
are provided in Section 3, followed by a description of the FAT-RLS algorithm in Section 4.
Section 5 offers a brief overview of the competitor algorithms used in the experiments,
while Section 6 discusses the conducted experiments. Finally, conclusions and potential
future research directions are presented in Section 7.

2. Permutation Optimization Problems

Permutations are flexible algebraic structures that have applications across numerous
domains due to their ability to model various concepts, such as orderings, rankings, one-to-
one mappings between sets, and tours or cycles within a given set of locations.

Permutations, typically referred to using Greek letters like σ or π, can be formally defined
as bijective functions mapping the set of the first n natural numbers, i.e., [n] = {1, 2, . . . , n},

https://sophia.estec.esa.int/gtoc_portal/?page_id=782
https://sophia.estec.esa.int/gtoc_portal/?page_id=782

Appl. Sci. 2024, 14, 10987 3 of 17

onto itself. While multiple notations for permutations exist, the widely used single-line
notation expresses a permutation σ as a sequence of all different items, as follows:

σ = ⟨σ(1), σ(2), . . . , σ(n)⟩, (1)

where σ(i) ∈ [n] denotes the item at position i ∈ [n] in the sequence, and it holds that
σ(i) ̸= σ(j) for any choice of i, j ∈ [n] such that i ̸= j.

There are n! permutations of length n and their set is denoted as Σn, which is also
referred to as the symmetric group. Indeed, Σn is a group in the algebraic sense because
there exists a binary operation between permutations, known as composition, that is associa-
tive and admits an identity element along with an inverse for every permutation. Given
σ, π ∈ Σn, their composition σπ is defined as σπ(i) = σ(π(i)) for all i ∈ [n]. The identity
permutation is usually denoted as ι = ⟨1, . . . , n⟩, while the inverse of σ is the permutation
σ−1 that satisfies the equivalences σ−1σ = σσ−1 = ι. Note that, in general, the commu-
tative property does not hold for all the permutations of Σn, therefore the group is not
Abelian. Nevertheless, this group structure is a fundamental characteristic of permutations
that has recently also been used for the development of both swarm and evolutionary
algorithms [22,23].

The objective of a permutation optimization problem is to either minimize or maximize
a real-valued function f : Σn → R. Because of the combinatorial nature of the domain
of the objective function, permutation problems do not admit gradient-based algorithms
(though model-based gradient search methods are however possible [24]). Additionally,
often real-world objective functions require running simulations or experiments that cannot
be expressed in closed analytical form, thus resulting in black-box optimization problems.
In these cases, an effective algorithm can only gain knowledge about the problem at hand
by testing various permutation solutions and observing the corresponding objective values.
Even worse, black-box objective functions are often expensive to evaluate (in terms of
time, memory, and other resources); therefore, a good algorithm should be able to locate a
satisfactory solution in a limited number of function evaluations.

Though being in a black-box context, it is often possible to exploit the problem descrip-
tion in order to infer the key features of a permutation that are relevant for the problem. In
fact, permutation problems can be broadly classified into two main categories:

• Ordering problems, where the goal is to find the optimal arrangement of items within a
set A;

• Assignment problems, whose objective is to determine the best one-to-one mapping
between two equally sized sets A and B.

Based on this classification, it is often possible to choose a movement operator or another
operator (for example, exchange moves for assignment problems or insertions for ordering
problems [25]). Similar choices can be inferred also for crossovers or other meta-heuristic
operators [26].

Though these two categories may not cover every possible permutation problem, they
encompass the most commonly encountered ones in the scientific literature. For instance,
the Linear Ordering Problem (LOP) [27,28] and the Permutation Flowshop Scheduling
Problem (PFSP) [29] are classic examples of ordering problems. On the other hand, the
Assignment Problem, which can be solved in polynomial time [30], and its more complex
NP-hard variant, the Quadratic Assignment Problem (QAP) [31], are typical examples of
assignment problems. Additionally, the well-known Traveling Salesman Problem (TSP) [32],
although focused on finding an optimal circular tour through a set of cities, is usually
considered an ordering problem (simply designating a start/end city in the tour allows the
solutions of the TSP to be represented as orderings over the remaining cities).

It is worth noting that the categorization ordering/assignment problems is not al-
ways clear-cut. Indeed, both LOP and TSP have been shown to be special cases of the
QAP [31]. This indicates that the boundary between the ordering and assignment nature of
permutation problems is not yet fully understood.

Appl. Sci. 2024, 14, 10987 4 of 17

Two commonly employed methods for representing solutions to permutation prob-
lems are the traditional linear representation and the use of permutation matrices. The
linear representation is based on the single-line notation of Equation (1), while the per-
mutation matrix encoding represents a permutation as a binary matrix, where each row
and column are one-hot vectors (i.e., they have one 1-entry and n− 1 0-entries). While
the linear representation is applicable to both kinds of permutation problems, the matrix
representation does not inherently encode any ordering information; rather, it only reflects
the pairings between row and column indices. Therefore, in this work, we utilize the linear
genotypic representation for permutation solutions.

However, as described in [21], two equivalent linear representations exist in ordering
problems: the ordering representation and the ranking representation. As previously discussed,
an ordering problem aims to optimally arrange a set A of n items based on a given objective
function. The ordering representation maps positions to items in A, whereas the ranking
representation maps items of A to their respective positions. Since the items in A are
denoted by identification numbers in [n], it is easy to confuse the two representations.
However, both representations convey the same information and can be interconverted
through a simple permutation inversion. In light of this, it is essential to specify which
representation is being used when defining both the objective function and the algorithmic
components used to tackle permutation problems. Using the wrong representation without
the necessary conversion can lead to subtle errors that are difficult to detect but may
significantly hinder the effectiveness of the algorithm. In this work, we adopt the ordering
representation.

Furthermore, it is important to mention that within the permutation space, there exist
various definitions of elementary moves which can be utilized to develop local search
strategies or genetic operators. The most classical ones are swapping two adjacent elements
(adjacent swaps), swapping two arbitrary elements (exchanges), and shifting an element to a
new position (insertions). Exchanges are typically effective in assignment problems, while
adjacent swaps and insertions are more suited for problems related to ordering sequences.
Additionally, it easy to see that (i) adjacent swaps are special cases of insertions, and (ii) a
single insertion can be expressed as a sequence of multiple adjacent swaps. As a result,
insertion moves are frequently preferred when designing algorithms aimed at solving
ordering problems.

3. Asteroid Routing Problem

López-Ibáñez et al. [5] first presented the Asteroid Routing Problem (ARP) as a testing
framework for computationally intensive optimization problems involving permutations
and black-box evaluations. The problem focuses on determining an optimal trajectory
for a spacecraft that departs from Earth and needs to sequentially visit each member of
a specified collection of n asteroids A = {a1, a2, . . . , an}. The goal is to simultaneously
minimize propellant usage and the duration of the mission.

From a computational point of view, the ARP can be seen as a bilevel optimization
problem: the outer task focuses on finding the sequence for visiting all the asteroids in the
set A, while the inner task involves computing, at each step in the sequence, the parking
and transit times required by the spacecraft to reach the next asteroid.

A solution of the ARP is represented as a pair (σ, t), where σ ∈ Σn defines the sequence
in which the asteroids in A are visited, and the vector t ∈ R2n

≥0 specifies the parking and
transit times. More precisely, let the Earth be denoted as the asteroid a0, we have for each
step i = 1, 2, . . . , n that the spacecraft stays in the orbit of (or is launched from, in case i = 1)
asteroid aσ(i−1) for a time t2i−1—called the parking time—then it travels from the orbit of
aσ(i−1) to the orbit aσ(i) for a time t2i—called the transit time.

Considering the spacecraft to be launched from the Earth at epoch τ0, its launch epoch
from the orbit of every asteroid in the sequence is τi = τ0 + ∑2i

j=1 tj, for i = 1, 2, . . . , n. Be-
tween two consecutive epochs τi−1 and τi, the spacecraft receives two impulsive maneuvers
∆v2i−1 and ∆v2i for, respectively, transiting from aσ(i−1) to aσ(i) and aligning its orbit with

Appl. Sci. 2024, 14, 10987 5 of 17

that of aσ(i). Impulsive maneuvers are rapid changes in velocity of the spacecraft, typically
achieved by firing thrusters briefly, thus allowing the spacecraft to change its trajectory or
orbit quickly. They are measured in meters per second, thus ∆v ∈ R2n. The magnitude of
the impulses are calculated as

(∆v2i−1, ∆v2i) = Lambert(aσ(i−1), aσ(i), τi−1, t2i), (2)

i.e., they are the solutions of the Lambert problem: a two-point boundary value problem
commonly used for preliminary mission details. Its mathematical details are not relevant
for this work, though they can be found, e.g., in [5,33].

Once the permutation σ is determined as the solution of the outer task, Equation (2)
is repeatedly solved in the inner task in order to find the impulsive maneuvers for each
step i = 1, 2, . . . , n. Therefore, after sequentially solving the n continuous optimization
problems, we have the values for the 2n-dimensional vectors t and ∆v.

In [5], the continuous problems in the inner task are solved by means of the sequential
least squares programming (SLSQP) algorithm, which is a well-known quasi-Newton
approach for non-linear optimization, having the peculiarity of being a deterministic
method [34]. This aspect enables focusing on the outer task of the ARP, as the computation
of the values of t and ∆v is treated as an internal and deterministic process that solely
depends on the given asteroid ordering σ. Its objective function to be minimized is therefore
defined as

f (σ) =
2n

∑
i=1
|∆vi|+

2 km/s
30 days

·
2n

∑
i=1

ti, (3)

where the first term is directly related to the energy required by the spacecraft to execute all
the maneuvers, while the second term accounts for the total time required to complete the
mission. The constant preceding the second summation has been empirically determined
in [5].

In conclusion, an ARP instance is fully characterized by the orbital parameters of
the Earth and all asteroids, the initial epoch τ0, and a gravitational constant. An instance
generator is described in [5], which accepts as arguments the number of asteroids n and
the seed for the random number generator. Implementations for both the ARP objective
function and the instance generator can be found at https://doi.org/10.5281/zenodo.5725
837 (accessed on 10 November 2024).

4. The Algorithm FAT-RLS

The Fast Adaptive Tabu-based Randomized Local Search (FAT-RLS), proposed in [21],
is a meta-heuristic algorithm tailored for solving costly black-box permutation problems. It
builds upon the traditional framework of randomized local search, to which it introduces
two key enhancements: an adaptive strategy to adjust its perturbation strength, and a
tabu-based methodology that prevents the repetition of redundant perturbations.

Randomized local search (RLS) consists of a trajectory-based approach that iteratively
evolves a solution of the problem at hand. At each iteration, the current solution is
compared to one of its neighbors selected at random. If the objective value is improved, the
trial neighbor replaces the current solution for the next iteration. Despite its straightforward
nature, RLS has been widely investigated within the theoretical framework of evolutionary
computation [35], but it is less frequently applied in practical situations. We opted to utilize
RLS as the search mechanism for our proposed algorithm due to its highly exploitative
nature and the fact that it only requires a single evaluation of the objective function per
iteration. This characteristic makes RLS particularly suited for maximizing the effectiveness
of the limited evaluation budget in costly black-box scenarios. Additionally, each iteration
merely involves applying a movement operator to the current solution, resulting in minimal
computational overhead. This advantage is especially significant when compared to the
computational demands of model learning and updating processes found in Bayesian
methods such as those described in [36,37].

https://doi.org/10.5281/zenodo.5725837
https://doi.org/10.5281/zenodo.5725837

Appl. Sci. 2024, 14, 10987 6 of 17

As our primary focus is on the ARP, which can be classified as a permutation ordering
problem (as outlined in Section 3), we utilize insertion moves to perturb the solutions. For
an ARP instance of size n and a solution σ ∈ Σn, an insertion move (i, j), where i, j ∈ [n],
entails shifting the element σ(i) to position j within σ. Let π represent the permutation
resulting from applying the insertion (i, j) to σ, in the case of a forward insertion, where
i < j, the transformation can be expressed as

π(k) =


σ(k) if k < i or k > j,
σ(k + 1) if i ≤ k < j,
σ(i) if k = j.

(4)

Incontrast, for a backward insertion, where i > j, the transformation is given by

π(k) =


σ(k) if k < j or k > i,
σ(k− 1) if j < k ≤ i,
σ(i) if k = j.

(5)

To make clearer how insertions work, we provide two illustrative examples in Figure 1.

Figure 1. Illustrativeexamples for forward and backward insertions.

Equations (4) and (5) illustrate that an insertion move (i, j) rearranges |i− j|+ 1 items
within a permutation, which makes the insertion effectively equivalent to a sequence of
|i− j| adjacent swaps. In the case of forward insertions, as shown in Equation (4) (with
the backward insertion case being similar), the insertion (i, j) corresponds to the following
series of |i− j| adjacent swaps:

AdjSwap(i, i + 1), AdjSwap(i + 1, i + 2), . . . , AdjSwap(j− 1, j).

A notable implication is that the Kendall’s-τ distance between π and σ (i.e., the number
of discordant pairs of elements in the two permutations) equals |i− j|. Consequently, we
define d = |i− j| as the perturbation strength for a generic insertion (i, j).

In FAT-RLS, instead of randomly choosing a single insertion move, as is typical in
traditional randomized local search methods, we regulate the perturbation strength d at
each iteration. Specifically, FAT-RLS implements an adaptive perturbation strength strategy
that requires two hyperparameters: the initial perturbation strength dini and the steepness
factor β. Initially, the perturbation strength d is set to dini. FAT-RLS then perturbs the current
solution by randomly selecting an insertion move (i, j) such that |i − j| = d. The value
of d decreases monotonically according to a “skewed S-shaped” function influenced by β.
This approach encourages a gradual transition from explorative behavior to exploitative
behavior throughout the iterations, which is a widely recognized best practice in the design
of meta-heuristic algorithms [38].

Appl. Sci. 2024, 14, 10987 7 of 17

For β ≥ 1, the “skewed S-shaped” s : [0, 1]→ [0, 1] is defined as

sβ(p) = 1− 1

1 +
(

1−p
p

)β
. (6)

Consequently, the perturbation strength d for each iteration is calculated by rounding to
the nearest integer the product of dini and the value of the s function when applied to the
evolution percentage p (i.e., the ratio of the current iteration number to the total iteration
budget). Figure 2 illustrates the behavior of the function sβ(p) for various values of β.
Specifically, when β = 1, the function simplifies to s1(p) = 1− p, resulting in a linear
decline in perturbation strength. As β increases, the curve becomes steeper in the middle
section, which prolongs the initial exploration phase and facilitates a more abrupt and
rapid transition to the final exploitative phase.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

s
(p

)

= 1
= 2
= 3

Figure 2. The “skewed S”-shaped function for β = 1, 2, 3.

Furthermore, since FAT-RLS is designed for low-budget optimization scenarios, we
incorporate a tabu-based mechanism. This mechanism serves not only to prevent the
trajectory of an FAT-RLS execution from revisiting previously explored solutions but also to
ensure that the same elements of the current permutation are not shifted too frequently by
the perturbation operation. Hence, FAT-RLS maintains a tabu queue, denoted as TQ, with
a maximum size of k, which is a hyperparameter of the algorithm. During each iteration,
an insertion (i, j) cannot be selected if the element π(i) designated for the shift is marked
as tabu (i.e., if π(i) ∈ TQ). When a non-tabu insertion (i, j) is selected and executed on
the current permutation, the shifted element is added to the tabu queue TQ. If the queue
reaches its maximum capacity, the oldest item is removed to accommodate the new entry.

In summary, FAT-RLS utilizes a straightforward randomized local search framework
that conducts a single objective function evaluation per iteration. To enhance its effec-
tiveness in low-budget contexts, the algorithm implements both an adaptive perturbation
strength strategy and a tabu-based mechanism. The adaptive perturbation strength is
implemented by considering insertion moves with a “shift length” that decreases during
the iterations, while the tabu-based mechanism is realized by maintaining a queue data
structure containing the items shifted during the last iterations. Therefore, these compo-

Appl. Sci. 2024, 14, 10987 8 of 17

nents serve to limit the number of applicable perturbations in each iteration, facilitating a
more rapid convergence toward potentially promising solutions.

For completeness, we provide the pseudocode for FAT-RLS in Algorithm 1. This
algorithm is designed to minimize (without loss of generality) an objective function of the
form f : Σn → R. It accepts three hyperparameters as input: dini ∈ [1, n), β ≥ 1, and k ≤ n,
as previously described.

Algorithm 1 Pseudocode of FAT-RLS

1: procedure FAT-RLS(dini, β, k)

2: /* Variables Initialization */
3: σ← random permutation from Σn
4: Evaluate f (σ)
5: nfev← 1
6: TQ← ∅

7: /* Main loop */
8: while nfev < budget do

9: /* Compute perturbation strength */
10: p← nfev/budget
11: d← round

(
1 + sβ(p) · (dini − 1)

)
12: /* Perturbation */
13: π ← σ
14: Sample i, j s.t. |i− j| = d and π(i) ̸∈ TQ
15: Perform the insertion (i, j) on π

16: /* Update current solution */
17: Evaluate f (π)
18: if f (π) < f (σ) then
19: σ← π
20: end if
21: nfev← nfev + 1

22: /* Update tabu queue */
23: Push item π(j) into TQ
24: if |TQ| = k then
25: Pop oldest item from TQ
26: end if
27: end while

28: return σ, f (σ)
29: end procedure

5. Other Algorithms for the ARP

The objective of this study is to evaluate the performance of the FAT-RLS algorithm
on the ARP. To achieve this, we conduct an experimental comparison of FAT-RLS against
four competing algorithms as follows: a basic random search (RS) method used as the
baseline algorithm; Greedy Nearest Neighbor (GNN)—a heuristic scheme specifically
introduced in [5] for the ARP; Combinatorial Efficient Global Optimization (CEGO)—a
Bayesian algorithm for combinatorial problems introduced in [36]; and the Unbalanced
Mallows Model (UMM)—an estimation-of-distribution algorithm described in [39].

In the work of [5], both CEGO and UMM were tested in two configurations: the
uninformedsetting, where the algorithms were executed in their standalone forms; and
the informed setting, where initial solutions were generated using GNN instead of being
created randomly.

The next four subsections provide a brief overview of the four competitor algorithms,
while the last subsection discusses the key differences of FAT-RLS with respect to UMM
and CEGO.

Appl. Sci. 2024, 14, 10987 9 of 17

5.1. Random Search (RS)

The basic random search procedure, referred to as RS, serves as a baseline method in
this study. RS generates a specified number of permutation solutions uniformly at random
by employing the well-known Fisher–Yates algorithm [40]. After generating these solutions,
it evaluates the objective function for all of them and selects the best one.

Despite its simplicity, RS represents a noteworthy baseline method due to its ability to
evaluate all solutions in parallel (at least theoretically) [41,42].

5.2. Greedy Nearest Neighbor (GNN)

The Greedy Nearest Neighbor heuristic, henceforth referred to as GNN, is inspired
by the well-known nearest neighbor heuristic used in the Traveling Salesman Problem
(TSP) [43].

The core concept of GNN is to construct a reasonably effective permutation of the
asteroids by iteratively visiting the asteroid that is nearest—under Euclidean distance—to
the last visited one. In order to calculate the distances, at each time step the locations of all
unvisited asteroids need to be computed.

The pseudocode for GNN is outlined in Algorithm 2. For more detailed information,
we direct interested readers to [5]. Moreover, an implementation of the GNN for ARP is
available at https://doi.org/10.5281/zenodo.5725837 (accessed on 10 November 2024).

Algorithm 2 The GNN constructive heuristic

1: procedure GNN
2: s← a0 ▷ Orbit of the Earth
3: τ ← τ0 ▷ Initial epoch for the spacecraft
4: U ← [n] ▷ Set of the unvisited asteroids
5: for i← 1 to n− 1 do
6: σ(i)← arg minj∈U dEucl(s, aj, τ)
7: (t2i−1, t2i)← SLSQP(s, aσ(i)) ▷ Inner task
8: τ ← τ + t2i−1 + t2i
9: U ← U \ {σ(i)}

10: s← aσ(i)
11: end for
12: return σ, f (σ)
13: end procedure

5.3. Combinatorial Efficient Global Optimization (CEGO)

The CEGO algorithm [36] builds upon the well-established Efficient Global Optimiza-
tion (EGO) method [44], adapting it specifically for combinatorial optimization. Originally
designed for continuous domains, EGO utilizes a Bayesian approach to iteratively learn a
Gaussian process model which represents a surrogate of the true objective function. Con-
trarily, CEGO targets combinatorial spaces by employing a distance-based combinatorial
surrogate model, substituting the classical Euclidean distance used in continuous spaces
with a discrete distance function that is more appropriate for the specific search space
at hand.

In [37], various distance functions suitable for the permutation space are explored.
The available implementation of CEGO begins by generating a small set of initial solutions
through a max–min distance procedure, which are then utilized to create an initial surrogate
model. Then, a genetic algorithm with operators designed for permutations is used to find
optimal or good-enough solutions of the surrogate function. The best solution identified
during this search is subsequently evaluated using the true objective function, allowing for
the acquisition of information about the objective function, thus allowing for the update
of the surrogate model maintained by CEGO. This process is iterated until a specified
termination criterion is fulfilled.

https://doi.org/10.5281/zenodo.5725837

Appl. Sci. 2024, 14, 10987 10 of 17

Hence, after the initial warm-up phase, each iteration of CEGO involves (i) optimiz-
ing the surrogate function, (ii) performing one true objective function evaluation, and
(iii) updating the surrogate model. It is important to highlight that, as demonstrated experi-
mentally in [21], updating the surrogate model within the permutation space presents its
own set of challenges, necessitating considerable computational time, particularly as the
number of training permutations (and their sizes) increases.

For further information regarding the settings of the genetic algorithm used in CEGO,
we recommend consulting [37], while an implementation of CEGO can be accessed at
https://cran.r-project.org/web/packages/CEGO (accessed on 10 November 2024).

5.4. Unbalanced Mallows Model (UMM)

The UMM algorithm [39] is part of the well-known family of estimation-of-distribution
algorithms. It works by iteratively alternating between learning and sampling from a Mal-
lows model, which is a well-established probability model for permutations [45]. Initially,
a set of solutions is generated randomly to establish the initial Mallows model. In each
subsequent iteration, UMM samples and evaluates a permutation, that is subsequently
used to update the Mallows model.

The Mallows model is defined by a mode permutation σ0 ∈ Σn and a dispersion
parameter θ ∈ R. The mode permutation is calculated using the Unbalanced Borda procedure,
which assigns weights to the sampled solutions in such a way that 90% of the total weight
is assigned to the top 10% of samples. The dispersion parameter θ is calculated considering
the expected Kendall’s-τ distance E[D] between a sampled permutation and σ0. This
expected distance is gradually adjusted from (n

2)/2 to 1 over the course of the iterations.
For additional details about UMM, readers are encouraged to consult [39], while the

implementation of UMM can be found at https://zenodo.org/record/4500974 (accessed
on 10 November 2024).

5.5. Key differences of FAT-RLS with Respect to UMM and CEGO

The main difference between UMM and CEGO, on the one hand, and FAT-RLS, on the
other, is that UMM uses a probability distribution to model a population of permutations,
and CEGO adopts a distance-based probability model over permutations to define a
surrogate function, whereas FAT-RLS does not use probability models over permutations
at all. In contrast, FAT-RLS adopts a greedy randomized local search approach, which is
not adopted either by UMM or by CEGO.

Moreover, FAT-RLS operators have a negligible linear complexity, while those of CEGO
and UMM require quadratic costs to perform statistical operations over permutations.

Another difference is that FAT-RLS, in contrast to CEGO and UMM, is invariant to
monotonic transformations of the objective function. This property is crucial in many
practical contexts. For example, consider objective values which are monetary amounts
or physical measurements. In real-world applications, it is essential that the algorithm’s
behavior—and thus the quality of the solution it produces—does not depend on the specific
currency or unit of measurement under consideration.

There are, however, a few similarities. For example, CEGO may use the Ulam distance
over permutations to construct its surrogate model. This distance metric counts the number
of insertions needed to transform one permutation into another. In this sense, CEGO
employs the same type of perturbation move used in FAT-RLS, i.e., insertions of items
within a permutation.

Moreover, there are notable parallels with UMM. With this regard, let us first note that
an insertion move that shifts an item by d positions results in a permutation that is d steps
away from the current solution in terms of Kendall’s-τ distance (which counts the number
of pairwise disagreements between two permutations). In this way, FAT-RLS and UMM,
despite being fundamentally different types of algorithms, exhibit somewhat similar search
behaviors: both iteratively perturb a permutation by moving to another one at a specific
Kendall’s-τ distance, which is progressively reduced over iterations. However, there are

https://cran.r-project.org/web/packages/CEGO
https://zenodo.org/record/4500974

Appl. Sci. 2024, 14, 10987 11 of 17

key differences, as follows: (i) UMM perturbs the centroid of the Mallows distribution,
while FAT-RLS perturbs the best solution to date; (ii) UMM performs a jump at an expected
Kendall’s-τ distance in an isotropic manner, whereas FAT-RLS uses a more constrained
insertion move; (iii) UMM linearly decreases the perturbation strength, while FAT-RLS uses
a “skewed S”-shaped decay pattern.

6. Experiments
6.1. Experimental Setup

Experiments were conducted following the settings outlined in [5]. We generated ten
ARP benchmark instances utilizing the instance generator and the specific seeds provided
by the authors, which enabled us to leverage the results made available for the competitor
and baseline algorithms. In particular, we considered two instances for each size n in the
set {10, 15, 20, 25, 30} using the seeds 42 and 73 (these seeds were arbitrarily chosen by the
authors of the ARP instance generator and we adopt them in order to make our analysis
comparable with their work). Each instance is denoted using the naming convention n_seed.

Two distinct experimental settings were employed as follows:

• Uninformed setting. In this scenario, the competing algorithms—FAT-RLS, UMM, and
CEGO—are initialized randomly, while RS serves as the baseline method.

• Informed setting. Here, the GNN heuristic is utilized both as the baseline method and
to generate reasonably effective initial solutions for FAT-RLS, UMM, and CEGO.

In both settings, all algorithms were executed 30 times for each instance, with a budget
of 100 objective function evaluations allocated to each execution. Note that the low budget
of 100 evaluations is motivated by the fact that the objective function is expensive to
evaluate, a typical scenario in real-world black-box optimization. Indeed, we recall that
the goal of this work is to investigate the performance of FAT-RLS in a costly black-box
permutation problem. Moreover, the same budget was also used by López-Ibáñez et al.
in [5].

Furthermore, note that in [5] two variants of UMM and CEGO were assessed: one
that evaluates the evolved permutation directly and another that inverts the permutation
before evaluation. However, as discussed in Section 2, only one of these variants is valid.
Therefore, in this work, we focused on a single version of each competitor algorithm: the
UMM-rank and the CEGO-order variants from [5], which also demonstrated superior
performance compared to their counterparts UMM-order and CEGO-rank.

Lastly, the hyperparameters for the competing algorithms were configured according
to the specifications in their original publications: [21] for FAT-RLS and [5] for CEGO and
UMM. More specifically, the FAT-RLS hyperparameters were set to dini = 0.5n, β = 1.2, and
k = n; UMM used weights 0.9 and 0.1, as explained in Section 5.4; while CEGO adopted
the Kendall’s-τ distance to build its surrogate model.

6.2. Results in the Uninformed Setting

The results of the uninformed experimental setting were analyzed from two different
points of view: average performance and peak performance. The average performance of
algorithm A on instance I is evaluated using the average relative percentage deviation (ARPD)
measure, defined as follows:

ARPDA,I = 100 · 1
k

k

∑
i=1

valA,I ,i − bestI
bestI

, (7)

where k = 30 is the number of executions carried out, valA,I ,i is the final objective value
achieved by algorithm A on its i-th execution on instance I , and bestI is the best objective
value found on instance I considering all the executions of every algorithm.

The ARPDs are summarized in Table 1. Performance comparisons between FAT-RLS
and the competitor algorithms (CEGO, UMM, and RS) are indicated by the following
symbols: ▲ marks cases where FAT-RLS significantly outperformed the competitor, ▽

Appl. Sci. 2024, 14, 10987 12 of 17

indicates cases where FAT-RLS was significantly outperformed, and the absence of a mark
means the difference was not statistically significant. Statistical significance was evaluated
using the Mann–Whitney U test [46], with a standard significance level of 0.05.

Table 1 shows that while FAT-RLS does not perform competitively on the two smaller
instances with size n = 10, it is the best algorithm in average on all the instances where
n ≥ 15. Most notably, the advantage of FAT-RLS is also statistically significant on the larger
instances with n ≥ 20.

Table 1. Average relative percentage deviations for uninformed experiments. Algorithms marked
with ▲ were significantly outperformed by FAT-RLS, whereas those indicated by ▽ showed a signifi-
cant performance advantage over FAT-RLS.

Instance FAT-RLS CEGO UMM RS

10_42 13.90 9.39 ▽ 12.11 20.92 ▲
10_73 16.13 6.55 ▽ 11.30 ▽ 15.53
15_42 12.84 13.80 17.66 ▲ 25.89 ▲
15_73 10.64 13.08 15.57 ▲ 23.53 ▲
20_42 10.31 15.35 ▲ 20.42 ▲ 25.59 ▲
20_73 14.95 24.08 ▲ 29.63 ▲ 32.66 ▲
25_42 14.42 25.25 ▲ 28.60 ▲ 34.01 ▲
25_73 9.46 20.26 ▲ 25.47 ▲ 28.19 ▲
30_42 7.56 19.75 ▲ 26.82 ▲ 27.77 ▲
30_73 9.15 20.28 ▲ 23.89 ▲ 27.36 ▲

Regarding peak performances, Table 2 provides the objective values obtained in the
best execution of each algorithm for every instance. The values in bold highlight, for each
instance, the best value achieved by any algorithm.

Table 2. Best objective values for uninformed experiments. The results highlighted in bold indicate
the highest performance achieved for each instance.

Instance FAT-RLS CEGO UMM RS

10_42 346.7 346.7 346.7 389.6
10_73 329.4 324.7 329.9 343.6
15_42 505.4 515.7 516.9 583.1
15_73 515.1 523.7 530.7 573.0
20_42 698.9 726.9 729.1 777.8
20_73 676.3 730.8 810.1 813.2
25_42 837.4 945.9 966.8 1075.1
25_73 889.0 988.7 1028.7 1089.6
30_42 1062.3 1183.0 1260.6 1271.0
30_73 1098.2 1212.1 1232.8 1344.2

Table 2 reveals that FAT-RLS achieved the best results in 9 out of 10 instances, with the
only exception being instance 10_73, where it achieved the second-best peak performance
after CEGO. This observation, along with the trends seen in Table 1, where the ARPDs of
FAT-RLS seem to improve on larger instances, suggests that FAT-RLS is capable of delivering
competitive results across a wide range of benchmarks. However, it demonstrates a lack of
robustness on smaller instances.

In order to further validate these observations, in Figure 3 we provide a boxplot graph
showing the distributions of the single relative percentage deviations—actually, the sum’s
arguments in Equation (7)—obtained by any single run of an algorithm on an instance of a
given size. The graph clearly confirms the provided conclusions.

Appl. Sci. 2024, 14, 10987 13 of 17

10 15 20 25 30
n

0

5

10

15

20

25

30

35

40

Re
la

tiv
e

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Algorithms
FAT-RLS
CEGO
UMM
RS

Figure 3. Relative percentage deviations recorded by the executions of the algorithms, aggregated by
instance size n, in the uninformed setting.

6.3. Results in the Informed Setting

The analyses of average and peak performance discussed in Section 6.2 were also
conducted in the informed setting, where algorithms are initialized with the solution
generated by the GNN heuristic. Tables 3 and 4, respectively, present the average and best
results achieved by FAT-RLS, CEGO, UMM, and GNN in the informed scenario.

Table 3. Average relative percentage deviations for informed experiments. Algorithms marked with ▲
were significantly outperformed by FAT-RLS, whereas those indicated by ▽ showed a significant
performance advantage over FAT-RLS.

Instance FAT-RLS CEGO UMM GNN

10_42 9.97 8.12 ▽ 10.29 ▲ 12.86 ▲
10_73 19.69 9.59 ▽ 18.54 ▽ 22.67 ▲
15_42 1.08 1.28 ▲ 2.21 ▲ 3.51 ▲
15_73 3.11 2.60 6.38 ▲ 12.50 ▲
20_42 6.45 6.92 15.71 ▲ 22.12 ▲
20_73 1.29 1.42 4.93 ▲ 5.98 ▲
25_42 6.34 9.46 ▲ 14.45 ▲ 17.50 ▲
25_73 1.62 8.18 ▲ 12.93 ▲ 13.72 ▲
30_42 3.43 3.75 6.71 ▲ 8.27 ▲
30_73 1.93 1.65 ▽ 6.85 ▲ 7.63 ▲

The results indicate that all three meta-heuristic algorithms—FAT-RLS, CEGO, and
UMM—showed improvement over the initial GNN-generated solution. However, the
performance gains over the baseline were less substantial compared to the uninformed set-
ting, likely because the initial solution in the informed scenario is heuristically constructed,
rather than generated randomly, providing a stronger starting point.

Appl. Sci. 2024, 14, 10987 14 of 17

Table 4. Best objective values for informed experiments. The results highlighted in bold indicate the
highest performance achieved for each instance.

Instance FAT-RLS CEGO UMM GNN

10_42 381.3 346.7 381.3 391.3
10_73 385.4 324.7 367.6 398.3
15_42 493.1 491.4 490.9 508.1
15_73 512.3 519.9 532.0 576.4
20_42 689.3 707.2 729.7 841.7
20_73 659.1 652.5 672.8 691.5
25_42 805.3 865.7 895.8 946.3
25_73 807.5 863.7 885.7 918.3
30_42 1045.3 1065.2 1093.9 1131.7
30_73 959.6 952.1 1002.0 1024.7

FAT-RLS maintained its dominance in the comparison with informed UMM, signifi-
cantly outperforming it in 9 out of 10 instances, similar to the uninformed scenario. How-
ever, the difference between informed FAT-RLS and informed CEGO is smaller. FAT-RLS
significantly outperformed CEGO in three instances, while CEGO outperformed FAT-RLS
in three other instances. Furthermore, FAT-RLS achieved the best solution in five instances,
while CEGO was the best in four instances, showing a more balanced performance.

A notable observation arises from comparing the results of Tables 2 and 4. On the
smaller instances, with n = 10, neither GNN nor informed FAT-RLS managed to outper-
form the results achieved by random search (RS) and black-box FAT-RLS, respectively. This
suggests that these smaller instances have a “shallow landscape”, where random explo-
ration is sufficient to find good solutions, reducing the advantage provided by heuristic or
informed initializations.

Finally, as for the uninformed setting, we validate the provided observations by
presenting in Figure 4, a boxplot graph showing the distributions of the relative percentage
deviations for the different instance sizes.

10 15 20 25 30
n

0

5

10

15

20

Re
la

tiv
e

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Algorithms
FAT-RLS
CEGO
UMM
GNN

Figure 4. Relative percentage deviations recorded by the executions of the algorithms, aggregated by
instance size n, in the informed setting.

Appl. Sci. 2024, 14, 10987 15 of 17

7. Conclusions

In this study, we experimentally investigated the performance of FAT-RLS, a straight-
forward trajectory-based meta-heuristic, in addressing the Asteroid Routing Problem (ARP).
FAT-RLS utilizes a well-established randomized local search approach and is enhanced by
two additional components: a tabu data structure and a mechanism for adaptive perturba-
tion strength.

We carried out a series of experiments using standard benchmark instances for the
ARP to compare the performance of FAT-RLS against two established methods: CEGO,
a Bayesian approach designed for combinatorial issues; and UMM, an estimation-of-
distribution algorithm specifically created for permutation problems. The experiments
were performed in two different contexts: an uninformed setting, where the initial solutions
for the competing algorithms were generated randomly; and an informed setting, where
a specifically defined heuristic method was employed to initialize the solutions for the
competing meta-heuristics.

The results demonstrate that FAT-RLS, despite its straightforward design, surpasses
both CEGO and UMM in the uninformed scenario, where the ARP is approached without
prior knowledge. However, in the context of heuristic initialization, FAT-RLS signifi-
cantly outperforms UMM, but there is no conclusive evidence indicating its superiority
over CEGO.

Consequently, these findings reinforce the key message previously highlighted in [21]:
simple algorithms like FAT-RLS, which primarily rely on robust exploitation strategies,
can serve as a viable alternative to more complex techniques in low-budget and high-cost
black-box combinatorial scenarios.

Moreover, the results examined, particularly those from the smaller instances, indicate
that FAT-RLS lacks robustness in certain situations, highlighting potential areas for im-
provement. Thus, a direction for future research would be to change the algorithm search
mechanism from the randomized local search framework to the (1 + 1)-EA scheme [47].
The core concept is to keep the expected number of insertion moves per iteration at one,
while permitting the algorithm to execute multiple insertions within a single iteration. This
strategy seeks to maintain a strong level of exploitation while minimizing the chances of the
algorithm becoming stuck in a local optimum within the insertion neighborhood. Finally,
another interesting future avenue of research is to approach other trajectory optimization
problems in the field of space engineering [11–14].

Funding: This research has been partially supported by the research project “Università per Stranieri
di Perugia–Finanziamento Dipartimentale alla Ricerca per Progetti di Ricerca di Ateneo–FDR 2024”.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Frazier, P.I. A tutorial on Bayesian optimization. arXiv 2018, arXiv:1807.02811.
2. Eriksson, D.; Pearce, M.; Gardner, J.; Turner, R.D.; Poloczek, M. Scalable global optimization via local bayesian optimization. Adv.

Neural Inf. Process. Syst. 2019, 32, 5496–5507.
3. Baioletti, M.; Milani, A.; Santucci, V. An Extension of Algebraic Differential Evolution for the Linear Ordering Problem with

Cumulative Costs. In Proceedings of the 14th International Conference on Parallel Problem Solving from Nature—PPSN XIV,
Edinburgh, UK, 19–21 September2016; pp. 123–133. https://doi.org/10.1007/978-3-319-45823-6_12.

4. Santucci, V.; Baioletti, M.; Milani, A. An Algebraic Differential Evolution for the Linear Ordering Problem. In Proceedings of the
Companion Material Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, 11–15 July
2015; pp. 1479–1480. https://doi.org/10.1145/2739482.2764693.

5. López-Ibáñez, M.; Chicano, F.; Gil-Merino, R. The asteroid routing problem: A benchmark for expensive black-box permutation
optimization. In Proceedings of the International Conference on the Applications of Evolutionary Computation (Part of EvoStar),
Madrid, Spain, 20–22 April 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 124–140.

6. Izzo, D.; Getzner, I.; Hennes, D.; Simões, L.F. Evolving solutions to TSP variants for active space debris removal. In Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; pp. 1207–1214.

https://doi.org/10.1007/978-3-319-45823-6_12
https://doi.org/10.1145/2739482.2764693

Appl. Sci. 2024, 14, 10987 16 of 17

7. Stuart, J.R.; Howell, K.C.; Wilson, R.S. Design of end-to-end trojan asteroid rendezvous tours incorporating scientific value.
J. Spacecr. Rocket. 2016, 53, 278–288.

8. Bourjolly, J.M.; Gurtuna, O.; Lyngvi, A. On-orbit servicing: A time-dependent, moving-target traveling salesman problem. Int.
Trans. Oper. Res. 2006, 13, 461–481.

9. Cerf, M. Multiple space debris collecting mission—debris selection and trajectory optimization. J. Optim. Theory Appl. 2013,
156, 761–796.

10. Simões, L.F.; Izzo, D.; Haasdijk, E.; Eiben, A. Multi-rendezvous spacecraft trajectory optimization with beam P-ACO. In
Proceedings of the Evolutionary Computation in Combinatorial Optimization: 17th European Conference, EvoCOP 2017,
Amsterdam, The Netherlands, 19–21 April 2017; Proceedings 17; Springer: Berlin/Heidelberg, Germany, 2017; pp. 141–156.

11. Petropoulos, A.E.; Kowalkowski, T.D.; Vavrina, M.A.; Parcher, D.W.; Finlayson, P.A.; Whiffen, G.J.; Sims, J.A. 1st ACT global
trajectory optimisation competition: Results found at the Jet Propulsion Laboratory. Acta Astronaut. 2007, 61, 806–815.

12. Izzo, D.; Hennes, D.; Simões, L.F.; Märtens, M. Designing complex interplanetary trajectories for the global trajectory optimization
competitions. In Space Engineering: Modeling and Optimization with Case Studies; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 151–176.

13. Izzo, D. Problem description for the 9th global trajectory optimisation competition. Acta Futur. 2017, 11, 49–55.
14. Izzo, D.; López-Ibáñez, M. Optimization challenges at the european space agency. In Proceedings of the Companion Conference

on Genetic and Evolutionary Computation, Lisbon, Portugal, 15–19 July 2023; pp. 1399–1415.
15. Lu, F.; Chen, W.; Feng, W.; Bi, H. 4PL routing problem using hybrid beetle swarm optimization. Soft Comput. 2023, 27, 17011–17024.
16. Lu, F.; Zhu, W.; Bi, H.; Huang, M.; Chen, W.; Zhao, Y. Two-level Tabu-predatory search for schedule risk control of IT outsourcing

projects. Inf. Sci. 2019, 487, 57–76.
17. Zhang, Z.; Zhang, N.; Chen, Z.; Jiang, F.; Baoyin, H.; Li, J. Global Trajectory Optimization of Multispacecraft Successive

Rendezvous Using Multitree Search. J. Guid. Control. Dyn. 2024, 47, 503–517.
18. HOLT, H.J.; Armellin, R.; Baresi, N.; Scorsoglio, A.; Furfaro, R. Low-thrust trajectory design using state-dependent closed-loop

control laws and reinforcement learning. In Proceedings of the 2020 AAS/AIAA Astrodynamics Specialist Conference, Virtual
Event, 9–12 August 2020.

19. Zuo, M.; Dai, G.; Peng, L. Multi-agent genetic algorithm with controllable mutation probability utilizing back propagation neural
network for global optimization of trajectory design. Eng. Optim. 2019, 51, 120–139.

20. Pritchard, B.; Doyle, D.; Black, J. Linear Programming Trajectory Optimization vs. Artificial Potential Function Methods for
Rendezvous and Proximity Operations. In Proceedings of the ASCEND 2020, Virtual Event, 16–18 November 2020; p. 4102.

21. Santucci, V.; Baioletti, M. A fast randomized local search for low budget optimization in black-box permutation problems. In
Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022; IEEE: Piscataway, NJ,
USA, 2022; pp. 1–8.

22. Santucci, V.; Baioletti, M.; Milani, A. An algebraic framework for swarm and evolutionary algorithms in combinatorial
optimization. Swarm Evol. Comput. 2020, 55, 100673.

23. Santucci, V.; Baioletti, M.; Milani, A. Tackling Permutation-based Optimization Problems with an Algebraic Particle Swarm
Optimization Algorithm. Fundam. Informat. 2019, 167, 133–158. https://doi.org/10.3233/FI-2019-1812.

24. Ceberio, J.; Santucci, V. Model-based Gradient Search for Permutation Problems. ACM Trans. Evol. Learn. Optim. 2023, 3, 1–35.
25. Baioletti, M.; Milani, A.; Santucci, V. Variable neighborhood algebraic Differential Evolution: An application to the Linear

Ordering Problem with Cumulative Costs. Inf. Sci. 2020, 507, 37–52.
26. Larranaga, P.; Kuijpers, C.M.H.; Murga, R.H.; Inza, I.; Dizdarevic, S. Genetic algorithms for the travelling salesman problem: A

review of representations and operators. Artif. Intell. Rev. 1999, 13, 129–170.
27. Santucci, V.; Ceberio, J. Using pairwise precedences for solving the linear ordering problem. Appl. Soft Comput. 2020, 87, 105998

https://doi.org/10.1016/j.asoc.2019.105998.
28. Ceberio, J.; Mendiburu, A.; Lozano, J.A. The linear ordering problem revisited. Eur. J. Oper. Res. 2015, 241, 686–696.
29. Ruiz, R.; Stützle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J.

Oper. Res. 2007, 177, 2033–2049.
30. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97.
31. Silva, A.; Coelho, L.C.; Darvish, M. Quadratic assignment problem variants: A survey and an effective parallel memetic iterated

tabu search. Eur. J. Oper. Res. 2021, 292, 1066–1084.
32. Pop, P.C.; Cosma, O.; Sabo, C.; Sitar, C.P. A comprehensive survey on the generalized traveling salesman problem. Eur. J. Oper.

Res. 2024, 314, 819–835.
33. Izzo, D. Revisiting Lambert’s problem. Celest. Mech. Dyn. Astron. 2015, 121, 1–15.
34. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272.
35. Doerr, B.; Kelley, A. The Runtime of Randomized Local Search on the Generalized Needle Problem. IEEE Trans. Evol. Comput.

2024, early access. https://doi.org/10.1109/TEVC.2024.3453776.
36. Zaefferer, M.; Stork, J.; Friese, M.; Fischbach, A.; Naujoks, B.; Bartz-Beielstein, T. Efficient global optimization for combinatorial

problems. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada,
12–16 July 2014; pp. 871–878.

https://doi.org/10.3233/FI-2019-1812
https://doi.org/10.1016/j.asoc.2019.105998
https://doi.org/10.1109/TEVC.2024.3453776

Appl. Sci. 2024, 14, 10987 17 of 17

37. Zaefferer, M.; Stork, J.; Bartz-Beielstein, T. Distance measures for permutations in combinatorial efficient global optimization. In
Proceedings of the International Conference on Parallel Problem Solving from Nature, Ljubljana, Slovenia, 13–17 September 2014;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 373–383.

38. Chopard, B.; Tomassini, M. An Introduction to Metaheuristics for Optimization; Springer: Berlin/Heidelberg, Germany, 2018.
39. Irurozki, E.; López-Ibáñez, M. Unbalanced mallows models for optimizing expensive black-box permutation problems. In

Proceedings of the Genetic and Evolutionary Computation Conference, Lille, France, 10–14 July 2021; pp. 225–233.
40. Eberl, M. Fisher-yates shuffle. Arch. Form. Proofs 2016, 2016, 19.
41. Santucci, V.; Milani, A.; Caraffini, F. An optimisation-driven prediction method for automated diagnosis and prognosis.

Mathematics 2019, 7, 1051.
42. Santucci, V.; Milani, A. Particle Swarm Optimization in the EDAs Framework. In Soft Computing in Industrial Applications;

Springer: Berlin/Heidelberg, Germany, 2011; pp. 87–96. https://doi.org/10.1007/978-3-642-20505-7_7.
43. Rosenkrantz, D.J.; Stearns, R.E.; Lewis, P.M., II. An analysis of several heuristics for the traveling salesman problem. SIAM J.

Comput. 1977, 6, 563–581.
44. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 1998,

13, 455–492.
45. Ceberio, J.; Irurozki, E.; Mendiburu, A.; Lozano, J.A. A distance-based ranking model estimation of distribution algorithm for the

flowshop scheduling problem. IEEE Trans. Evol. Comput. 2013, 18, 286–300.
46. Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013;

Volume 751.
47. Doerr, B.; Ghannane, Y.; Brahim, M.I. Towards a stronger theory for permutation-based evolutionary algorithms. In Proceedings

of the Genetic and Evolutionary Computation Conference, Boston, MA, USA, 9–13 July 2022; pp. 1390–1398.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-642-20505-7_7

	Introduction and Related Work
	Permutation Optimization Problems
	Asteroid Routing Problem
	The Algorithm FAT-RLS
	Other Algorithms for the ARP
	Random Search (RS)
	Greedy Nearest Neighbor (GNN)
	Combinatorial Efficient Global Optimization (CEGO)
	Unbalanced Mallows Model (UMM)
	Key differences of FAT-RLS with Respect to UMM and CEGO

	Experiments
	Experimental Setup
	Results in the Uninformed Setting
	Results in the Informed Setting

	Conclusions
	References

