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Quantitative MRI analysis plays an important role in 
characterizing brain changes associated with aging 

processes and neurodegenerative diseases (1–3). Brain 
morphometric features based on MRI segmentation have 
been proven able to provide unique information for dif-
ferentiating patients with parkinsonian syndromes (4,5). 
In particular, brainstem and ventricular planimetric mea-
surements have been proposed as reliable and informative 
imaging biomarkers to support the diagnosis of progressive 
supranuclear palsy (PSP) (4,6–9). Indeed, several studies 

have consistently shown that the degree of atrophy of these 
regions accurately differentiates patients with PSP from pa-
tients with other atypical parkinsonian disorders and Par-
kinson disease (PD), and combined planimetric measures 
of the brainstem, namely the midbrain to pons area ratio 
(MP) and the MR parkinsonism index (MRPI), are con-
sidered level 3 diagnostic biomarkers for PSP (6,10–13). 
More recently, a new version of the MRPI (ie, MRPI 2.0) 
that includes combined planimetric measures of brainstem 
and ventricular regions has been developed and showed 
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Purpose:  To develop a fast and fully automated deep learning (DL)–based method for the MRI planimetric segmentation and measurement 
of the brainstem and ventricular structures most affected in patients with progressive supranuclear palsy (PSP).

Materials and Methods:  In this retrospective study, T1-weighted MR images in healthy controls (n = 84) were used to train DL models for 
segmenting the midbrain, pons, middle cerebellar peduncle (MCP), superior cerebellar peduncle (SCP), third ventricle, and frontal horns 
(FHs). Internal, external, and clinical test datasets (n = 305) were used to assess segmentation model reliability. DL masks from test datasets 
were used to automatically extract midbrain and pons areas and the width of MCP, SCP, third ventricle, and FHs. Automated measure-
ments were compared with those manually performed by an expert radiologist. Finally, these measures were combined to calculate the 
midbrain to pons area ratio, MR parkinsonism index (MRPI), and MRPI 2.0, which were used to differentiate patients with PSP (n = 71) 
from those with Parkinson disease (PD) (n = 129).

Results:  Dice coefficients above 0.85 were found for all brain regions when comparing manual and DL-based segmentations. A strong 
correlation was observed between automated and manual measurements (Spearman ρ > 0.80, P < .001). DL-based measurements showed 
excellent performance in differentiating patients with PSP from those with PD, with an area under the receiver operating characteristic 
curve above 0.92.

Conclusion:  The automated approach successfully segmented and measured the brainstem and ventricular structures. DL-based models may 
represent a useful approach to support the diagnosis of PSP and potentially other conditions associated with brainstem and ventricular 
alterations.
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area of midbrain and pons, the width of the middle cerebel-
lar peduncle (MCP) and superior cerebellar peduncle (SCP), 
and the width of the third ventricle and frontal horns (FHs). 
Finally, these planimetric measurements were combined to cal-
culate the MP, MRPI, and MRPI 2.0 and differentiate patients 
with PSP from those with PD.

Materials and Methods

Dataset Description
In this retrospective study, a total of 389 T1-weighted images 
were used for training and testing of each DL model (Table 
1). First, we randomly selected 120 controls (age range, 40–
80 years) from the Parkinson’s Progression Markers Initiative 
dataset (https://www.ppmi-info.org/access-data-specimens/down-
load-data). A 70:30 ratio was used to split the sample into the 
training (n = 84; mean age, 60.41 years ± 12.73 [SD]) and 
internal test (n = 36; mean age, 58.51 years ± 9.86) datasets. 
One individual was excluded from the internal test dataset 
due to signal intensity artifacts in the data. Next, 35 controls 
(mean age, 61.51 years ± 7.38) from the Frontotemporal Lobar 
Degeneration Neuroimaging Initiative (https://4rtni-ftldni.
ini.usc.edu/) and 35 (mean age, 65.37 years ± 4.53) from the 
Alzheimer’s Disease Neuroimaging Initiative (https://adni.loni.
usc.edu/) were used as external test sets. Finally, MR images in 
71 patients with PSP–Richardson syndrome, (58 [mean age, 
70.57 years ± 7.16] from the 4-Repeat Tauopathy Neuroim-
aging Initiative [http://4rtni-ftldni.ini.usc.edu] and 13 [mean 
age, 70.46 years ± 3.07] from the Center for Neurodegenera-
tive Diseases and the Aging Brain of the University of Bari at 
Pia Fondazione Cardinale G. Panico) and 129 age- and sex-
matched patients with PD (98 [mean age, 68.45 years ± 5.51 
years] from the Parkinson’s Progression Markers Initiative data-
set and 31 [mean age, 69.88 years ± 5.34 years] from the Cen-
ter for Neurodegenerative Diseases and the Aging Brain) were 
used as clinical test dataset. T1-weighted images were acquired 
with 1.5-T and 3-T MRI scanners from different vendors and 
with a wide variety of high-resolution sequences (Table S1). All 
individuals provided informed consent, and the protocol was 
approved by the institutional review board at all sites.

Preprocessing
MR images were first processed with Automatic Registration 
Toolbox software (ART; Nitric https://www.nitrc.org/projects/
art) to automatically reorient images and define the midsagittal 
section and the anterior and the poster commissures (25,26); 
the images were then resampled into a 256 × 256 × 512-mm3 

volume. Next, the intensity range of each two-dimensional sec-
tion used for manual segmentation and as input for the DL-
based models was individually transformed to a 0–1 range us-
ing min-max normalization.

Manual Segmentations
Manual segmentations of brainstem and ventricular regions 
were performed on preprocessed T1-weighted images by a ra-
diologist (R.D.B., with more than 30 years of experience as 

higher accuracy than MRPI in differentiating patients with PSP 
parkinsonism from patients with PD (14).

Currently, manual segmentation is considered the reference 
standard for planimetric and volumetric measurements of brain 
structures at MRI. However, this approach is time- and resource-
demanding and prone to inter- and intrarater variability, espe-
cially for small brain regions, thus limiting the usability of the 
above-mentioned neuroimaging biomarkers in routine clinical 
practice (15). To overcome these issues, several studies have de-
veloped semi- or fully automated segmentation methods, adopt-
ing threshold- and landmark-based approaches (13,16,17), as 
well as atlas-based segmentation strategies (18,19). This decade, 
deep learning (DL) techniques have also been employed for 
the rapid and accurate segmentation of brain regions (20–22). 
DL models learn to capture relevant features from raw images 
through a sequence of contracting and expanding paths of con-
volutions (encoder and decoder components) and generate as 
final output the desired segmentation masks (23,24). However, 
to the best of our knowledge, DL-based segmentation has never 
been applied to the planimetric segmentation and measurement 
of brainstem and ventricular regions.

In the current study, we developed and validated an auto-
mated approach for the planimetric segmentation and mea-
surement of brainstem and ventricular structures using DL-
based models on volumetric T1-weighted MR images. First, 
DL-based segmentation models were trained to automatically 
delineate the midbrain and pons, middle and superior cerebel-
lar peduncles, and the third and lateral ventricles. Second, the 
accuracy of each DL-based segmentation model was assessed 
on internal, external, and clinical test datasets. Third, DL-
based segmentations were used to automatically quantify the 

Abbreviations
AUC = area under the receiver operating characteristic curve, DL 
= deep learning, FHs = frontal horns, MCP = middle cerebellar 
peduncle, MP = midbrain to pons area ratio, MRPI = magnetic 
resonance parkinsonism index, PSP = progressive supranuclear 
palsy, SCP = superior cerebellar peduncle

Summary
The deep learning–based method developed using T1-weighted MR 
images provided fast and accurate planimetric segmentations and 
measurements of the brainstem and ventricular structures most af-
fected in patients with progressive supranuclear palsy.

Key Points
	■ A deep learning–based method provided robust brainstem and 

ventricular segmentation on T1-weighted images compared to 
manual-based segmentation (mean Dice coefficients > 0.85).

	■ The automated approach took less than 2 minutes per case to seg-
ment and measure specific brainstem and ventricular structures.

	■ The deep learning–based approach proved to be a valuable tool 
for assisting radiologists in the fast and accurate assessment of 
planimetric measurements of brainstem and ventricular regions, 
which are primarily affected in patients with progressive supra-
nuclear palsy.

Keywords
MR Imaging, Brain/Brain Stem, Segmentation, Quantification, 
Diagnosis, Convolutional Neural Network
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age. In more detail, ResNet-50 is a 50-layer convolutional neu-
ral network that uses skip connections to propagate informa-
tion over layers, allowing for increased depth of the network 
and higher performance levels compared with other models 
(27). The ResNet-50 was pretrained on the ImageNet 2012 
classification dataset (https://www.image-net.org/), which com-
prises 1000 classes and 1.28 million training images. The pre-
trained weights were obtained from a public repository (https://
github.com/fchollet/deep-learning-models/releases/download/v0.2/
resnet50_weights_tf_dim_ordering_tf_kernels.h5). The train-
ing of each DL model was performed in five epochs using the 
Adam optimizer with an initial learning rate of 0.01. Moreover, 
data augmentation was used to increase the size of the training 
dataset to enhance the performance of DL models. Specifically, 
data augmentation was achieved by rotating (−30° < angle θ 
< 30°) and translating images by −20% to 20% on the x- and 
y-axis independently. All models were implemented in a Keras 
framework (https://github.com/keras-team), with Python version 
3.6.9 and TensorFlow version 2.4.1 on an NVIDIA Quadro 
RTX 4000 (8 GB) graphics processing unit. Codes are avail-
able at https://github.com/divamgupta/image-segmentation-keras.

Automated Planimetric Measurements Using DL-based 
Segmentations
The pipeline for the automated DL-based segmentation and 
measurement of brainstem and ventricular structures is shown 
in Figure 2. Using the DL outputs, the midbrain and pons areas 
were calculated by counting the number of pixels belonging to 
each mask. Next, the MCP width was quantified by extracting 
the contour of each DL-based binary mask and then calculating 
the distances between the most caudal point of the upper profile 
and the most rostral point of the inferior profile (13). For the 
SCP width, the symmetry axis was automatically defined for the 
left and right peduncle masks, and the width of each structure 
was calculated as the largest distance between the medial and 
lateral borders of the mask (13). This procedure was applied on 
the three consecutive sections, and the average SCP width was 

a neuroradiologist), who was blinded to the patients’ diagno-
ses. Manual segmentation of the midbrain and pons was per-
formed as described in previous studies (10,11). In particular, 
the midbrain tegmentum and a line passing through the su-
perior pontine notch and the inferior edge of the quadrigemi-
nal plate were used to define the upper and bottom borders of 
the midbrain, respectively. A second line, parallel to the first 
line passing through the inferior pontine notch, was drawn to 
define the margins of the pons. The MCP masks were drawn 
in 12 consecutive sections around the midsagittal plane us-
ing the regions of interest previously described in Nigro et 
al (13). These sections were automatically chosen to expose 
the MCP between the pons and the cerebellum. For manual 
segmentation of the SCP, MR images were first automatically 
reformatted in the anteroposterior direction to identify the 
first view on which inferior colliculi and SCPs were separated 
(13). Subsequently, manual segmentation of the SCP was 
performed in three consecutive sections. To expose the third 
ventricle and the FHs of the lateral ventricles, T1-weighted 
images were automatically reformatted in axial view using the 
anterior commissure–posterior commissure plane (14). Next, 
the third ventricle was segmented on the axial section gener-
ated at the level of both the anterior and posterior commis-
sures, and the FHs were delineated on 10 consecutive axial 
sections. All manual segmentations were performed using an 
in-house–developed tool.

ResNet50 Architecture for Automated Segmentation
MR images exposing brainstem and ventricular regions of in-
terest and corresponding manual segmentations were used as 
input to construct DL models (Fig 1). Specifically, a DL-based 
segmentation model was developed for each target structure by 
using a network based on encoder-decoder architecture, that is, 
ResNet-50–U-Net (27,28). The encoder ResNet-50 extracted 
features from the original image, and the decoder U-Net 
completed the fusion of information based on these features, 
thereby completing the pixel-by-pixel prediction of input im-

Table 1: Demographic Data of Individuals Included in Training, Internal, External, and Clinical Test Datasets

Variable

Training  
Dataset

Internal Test 
Dataset External Test Dataset Clinical Test Dataset

PPMI
HC (n = 84)

PPMI
HC (n = 35)

FTLDNI
HC (n = 35)

ADNI
HC (n = 35)

PPMI
PD (n = 98)

4RTNI
PSP (n = 58)

CMND
PD (n = 31)

CMND
PSP (n = 13)

Male/female 
ratio

50:34 20:15 12:23 14:21 46:52 24:34 20:11 9:4

Age (y)* 60.41 ± 12.73 58.51 ± 9.86 61.81 ± 7.38 65.37 ± 4.53 68.45 ± 5.51 70.57 ± 7.16 69.88 ± 5.34 70.46 ± 3.07
MRI manu-

facturer
Philips
GE
Siemens

Philips
GE
Siemens

Siemens Philips
GE
Siemens

Philips
GE
Siemens

Siemens Philips Philips

Note.—Unless otherwise specified, data are numbers. ADNI = Alzheimer’s Disease Neuroimaging Initiative, CMND = Center for Neu-
rodegenerative Diseases and the Aging Brain, 4RTNI = 4-Repeat Tauopathy Neuroimaging Initiative, FTLDNI = Frontotemporal Lobar 
Degeneration Neuroimaging Initiative, HC = healthy controls, PD = Parkinson disease, PPMI = Parkinson’s Progression Markers Initiative, 
PSP = progressive supranuclear palsy.
* Values are means ± SDs.
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assessed through Spearman rank correlation coefficient analysis 
and concordance correlation coefficients. Moreover, Spearman 
correlation analysis was used to assess the relationship between 
brainstem and ventricular planimetric features. Receiver oper-
ating characteristic curve analysis was used to assess the diag-
nostic performance (area under the receiver operating charac-
teristic curve [AUC], sensitivity, and specificity) of planimetric 
measurements in differentiating patients with PSP from those 
with PD. The Youden index (ie, sensitivity + specificity −1) was 
used to identify the optimal cutoff values. Finally, the AUCs of 
DL-based and manual measurements of the MP, MRPI, and 
MRPI 2.0 were compared using the nonparametric methods 
developed by DeLong et al (29). Statistical analyses were per-
formed using MATLAB R2021a version 9.10.0 (MathWorks). 
P values less than .05 were considered statistically significant.

Results

Comparison of Manual and Automated Segmentations in 
Internal, External, and Clinical Datasets
Figure 3 shows box plots of the Dice overlap for each brain 
structure in the internal, external, and clinical test sets. The 
mean Dice scores comparing automated to manual segmen-
tations were higher than 0.90 for the midbrain, pons, MCP, 

calculated. The third ventricle width was defined as the maxi-
mum distance between the lateral borders of its mask. For each 
axial section showing the FHs of the lateral ventricles, the largest 
width was considered (17) as the maximum distance between 
left to right FHs. Finally, MP, MRPI, and MRPI 2.0 were calcu-
lated as previously described (10,11,14).

Statistical Analysis
To explore accuracy of the DL results, automated segmenta-
tions were compared to manual tracing by calculating Dice 
coefficients in the internal, external, and clinical test datasets. 
In particular, the Dice score was calculated using the follow-
ing formula: (2 × TP)/[(TP + FP) + (TP + FN)], where TP, FP, 
and FN indicated the number of true-positive, false-positive, 
and false-negative pixels, respectively. A Dice score of 1 reflects 
a perfect spatial correspondence between the automated and 
manual masks, whereas a score of 0 indicates no agreement. As 
an additional measure of the DL models’ efficacy, automated 
planimetric measurements conducted on DL-based masks 
were compared to those manually performed by an experi-
enced radiologist as described in previous studies (10,11). The 
Mann-Whitney U test was used to assess differences between 
automated and manual measurements for each brain region. 
The agreement between automated and manual measures was 

Figure 1:  Data processing for deep learning (DL) model training and testing. Manual segmentations of the brainstem and ventricular regions 
were performed using preprocessed T1-weighted images from the training dataset (red arrows). The neural networks were then trained using manual 
segmentations (left panel). The trained models were applied to internal, external, and clinical test images (blue arrows) to output the masks of mid-
brain, pons, middle cerebellar peduncles, superior cerebellar peduncles, third ventricles, and frontal horns (right panel). Finally, the performance of 
the DL-based models was evaluated by comparing the pixelwise agreement between the predicted segmentation and its corresponding manual 
ground truth. ADNI = Alzheimer’s Disease Neuroimaging Initiative, CMND = Center for Neurodegenerative Diseases and the Aging Brain, 4RTNI = 
4-Repeat Tauopathy Neuroimaging Initiative, FTLDNI = Frontotemporal Lobar Degeneration Neuroimaging Initiative, PD = Parkinson disease, PPMI 
= Parkinson’s Progression Markers Initiative, PSP = progressive supranuclear palsy.
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relation coefficient equal to 0.89 and 0.80 was found for the 
MCP and SCP, respectively. The strong agreement between 
automated and manual measurement was also shown by the 
concordance correlation coefficients, with values above 0.80 
for all brain structures (Fig 5). No evidence of differences was 
found between automated and manual measurements for pa-
tients with PD and PSP (Table 3). Finally, a strong correlation 
was observed between automated and manual measurements 
for all brain structures, with Spearman correlation coefficients 
ranging between 0.84 and 0.99 (Figs S1 and S2).

Evaluation of DL-based and Manual Planimetric 
Measurements in Patients with PD and PSP
A significant difference in automated measurements of the 
single brain regions was found between patients with PSP and 

third ventricle, and FHs in each dataset and were 0.87, 0.89, 
and 0.88 for the SCP on the internal, external, and clinical 
test sets, respectively. A graphic representation of the DL-based 
segmentation outputs is shown in Figure 4.

Comparison between Manual and Automated 
Measurements in Internal, External, and Clinical Datasets
No evidence of differences was found between automated 
and manual measurements for the internal and external test 
datasets (Table 2). A significant correlation emerged, for both 
datasets, between automated and manual measurements for 
all brain regions (Spearman correlation coefficient ranging be-
tween 0.80 and 0.96) (Fig 5). A correlation coefficient of 0.90 
or higher was found between automated and manual values 
for the midbrain, pons, third ventricle, and FHs, while a cor-

Figure 2:  Pipeline for the automated planimetric deep learning–based segmentation and measurement of the brainstem and ventricular structures. AC 
= anterior commissure, FH = frontal horn, MCP = middle cerebellar peduncle, PC = posterior commissure, SCP = superior cerebellar peduncle, 3rd V = third 
ventricle.
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patients with PD (Table 3, Fig 6). Correlation analyses also re-
vealed significant relationships among brainstem and ventricu-
lar planimetric features (Fig S3). Concerning combined plani-
metric indices, automated MP values were significantly lower 

in patients with PSP (median = 0.15, range = 0.10–0.26) than 
in patients with PD (median = 0.24, range = 0.19–0.30). Au-
tomated MRPI and MRPI 2.0 values were significantly higher 
in patients with PSP (MRPI: median = 17.38, range = 7.69–

Figure 3:  Comparison of automatic and manual segmentations, using Dice similarity coefficients, in the internal, external, and clinical test datasets. ADNI = Alzheimer’s 
Disease Neuroimaging Initiative, CMND = Center for Neurodegenerative Diseases and the Aging Brain, 4RTNI = 4-Repeat Tauopathy Neuroimaging Initiative, FHs = 
frontal horns, FTLDNI = Frontotemporal Lobar Degeneration Neuroimaging Initiative, HC = healthy controls, MCP = middle cerebellar peduncle, PD = Parkinson disease, 
PPMI = Parkinson’s Progression Markers Initiative, PSP = progressive supranuclear palsy, SCP = superior cerebellar peduncle, 3rd V = third ventricle.

Figure 4:  Examples of automated deep learning–based segmentations performed on T1-weighted images acquired with different scanner manufacturers and 
MRI protocols.
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Table 2: Manual and Automatic Measurements of Brainstem and Ventricular Regions, MP, MRPI, and MRPI 2.0 in Test 
Datasets

Parameter

Internal Test Dataset
(PPMI)

External Test Dataset
(FTLDNI)

External Test Dataset
(ADNI)

Automated  
Measurements

Manual  
Measurements

Automated  
Measurements

Manual  
Measurements

Automated  
Measurements

Manual  
Measurements

Midbrain (mm2) 141.69 ± 18.24 141.31 ± 18.21 137.09 ± 20.22 135.34 ± 21.61 136.91 ± 13.02 142.86 ± 14.64
Pons (mm2) 535.09 ± 47.61 527.40 ± 43.36 532.97 ± 61.19 520.23 ± 63.70 537.20 ± 54.90 538.91 ± 55.31
MCP (mm) 9.21 ± 1.23 8.90 ± 0.94 9.75 ± 0.72 9.31 ± 0.76 9.39 ± 1.07 9.21 ± 1.00
SCP (mm) 3.52 ± 0.46 3.55 ± 0.37 3.66 ± 0.40 3.66 ± 0.38 3.76 ± 0.30 3.67 ± 0.40
Third ventricle (mm) 4.31 ± 1.42 4.48 ± 1.38 4.29 ± 1.74 4.5 ± 1.4 4.41 ± 1.93 4.77 ± 1.89
FHs (mm) 33.60 ± 3.34 34.33 ± 2.91 33.57 ± 3.45 34.45 ± 3.95 33.38 ± 4.55 32.80 ± 4.66
MP 0.27 ± 0.03 0.27 ± 0.03 0.26 ± 0.03 0.26 ± 0.03 0.26 ± 0.03 0.27 ± 0.03
MRPI 10.06 ± 1.80 9.52 ± 1.47 10.55 ± 1.67 9.95 ± 1.39 9.89 ± 1.68 9.63 ± 1.81
MRPI 2.0 1.28 ± 0.41 1.24 ± 0.43 1.36 ± 0.60 1.34 ± 0.52 1.31 ± 0.58 1.42 ± 0.61

Note.—Values are means ± SDs. Each dataset consists of 35 healthy controls. No evidence of statistically significant differences was found 
in each dataset between automated and manual measurements. ADNI = Alzheimer’s Disease Neuroimaging Initiative, FHs= frontal horns, 
FTLDNI = Frontotemporal Lobar Degeneration Neuroimaging Initiative, MCP = middle cerebellar peduncle, MP = midbrain to pons area 
ratio, MRPI = MR parkinsonism index, PPMI = Parkinson’s Progression Markers Initiative, SCP = superior cerebellar peduncle.

Figure 5:  Correlations between manual and automated planimetric measurements in internal and external test datasets. CCC = concordance correlation coefficient, 
FHs = frontal horns, MCP = middle cerebellar peduncle, rho = Spearman correlation coefficient, SCP = superior cerebellar peduncle, 3rd V = third ventricle.



8� radiology-ai.rsna.org  ■  Radiology: Artificial Intelligence Volume 6: Number 3—2024

DL-based Brainstem and Ventricular MR Planimetry in Progressive Supranuclear Palsy

Table 3: Automated and Manual Measurements of Brainstem and Ventricular Regions, 
MP, MRPI, and MRPI 2.0 in Patients with PSP and Patients with PD

Parameter

Automated Measurements Manual Measurements

Mean ± SD Range Mean ± SD Range

Patients with PD  
(n = 127)

  Midbrain (mm2) 128.35 ± 16.56 84–172 133.61 ±17.16 85–181
  Pons (mm2) 533.72 ± 52.51 414–662 546.61 ± 54.44 421–680
  MCP (mm) 9.30 ± 0.87 6.7–11.42 9.27 ± 0.93 6.20–11.03
  SCP (mm) 3.72 ± 0.47 2.41–5.04 3.66 ± 0.46 2.51–5.11
  3rd V (mm) 5.80 ± 1.98 1.50–11.50 6.22 ± 2.00 2.00–11.50
  FHs (mm) 36.45 ± 4.29 27.02–51.09 35.51 ± 4.48 23.00–51.01
  MP 0.24 ± 0.03 0.19–0.30 0.24 ± 0.03 0.18–0.35
  MRPI 10.64 ± 1.85 6.81–17.69 10.59 ± 1.85 6.84–17.01
  MRPI 2.0 1.70 ± 0.62 0.35–3.31 1.86 ± 0.67 0.55–4.10
Patients with PSP  

(n = 67)
  Midbrain (mm2) 73.31 ± 17.44 41–132 76.91 ± 16.53 42–127
  Pons (mm2) 463.61 ± 59.91 344–623 470.46 ± 58.81 356–627
  MCP (mm) 8.39 ± 1.05 5.67–10.40 8.31 ± 0.98 5.30–11.00
  SCP (mm) 3.11 ± 0.45 2.10–4.24 2.94 ± 0.50 2.00–4.35
  3rd V (mm) 8.27 ± 2.36 1.50–14.50 8.91 ± 2.56 1.00–15.00
  FHs (mm) 39.10 ± 4.86 31.02–51.00 38.05 ± 4.83 29.50–49.09
  MP 0.16 ± 0.03 0.10–0.26 0.16 ± 0.03 0.10–0.24
  MRPI 18.01 ± 5.51 7.69–38.71 18.39 ± 5.44 7.83–35.92
  MRPI 2.0 3.85 ± 1.65 0.78–9.16 4.30 ± 1.89 0.48–9.15

Note.—FHs = frontal horns, MCP = middle cerebellar peduncle, MP = midbrain to pons area 
ratio, MRPI = MR parkinsonism index, PD = Parkinson disease, PSP = progressive supranuclear 
palsy, SCP = superior cerebellar peduncle, 3rd V = third ventricle.

Figure 6:  Automated planimetric segmentation of midbrain, pons, MCP, SCP, third ventricle, and frontal horns in a 72-year-old male patient with PD and a 75-year-old 
male patient with PSP. FHs = frontal horns, MCP = middle cerebellar peduncle, PD = Parkinson disease, PSP = progressive supranuclear palsy, SCP = superior cerebellar 
peduncle, 3rd V = third ventricle.
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38.71; MRPI 2.0: median = 3.49, range = 0.78–9.16) than in 
those with PD (MRPI: median = 10.66, range = 6.81–17.69; 
MRPI 2.0: median = 1.61, range = 0.35–3.31) (Table 3). Simi-
lar results were obtained when considering manual measure-
ments (Table 3). Automated planimetric measurements were 
successfully completed in 97% of cases (194 of 200 total pa-
tients); in six cases, the automated approach failed to identify 
the midsagittal section, leading to incorrect DL-based segmen-
tations and measurements.

Performance of Automated and Manual Measurement in 
Differentiating Patients with PSP from those with PD
Sensitivity, specificity, and AUC for the automated MP, MRPI, 
and MRPI 2.0 are reported in Table 4. In the receiver operating 
characteristic curve analyses, all MRI indices showed an AUC 
higher than 0.92 in distinguishing patients with PD from 
patients with PSP. An automated MP value of 0.20 showed 
90% sensitivity (60 of 67) and 97% specificity (123 of 127) 
in differentiating patients with PSP from patients with PD. 
An MRPI value of 12.94 showed 90% sensitivity (60 of 67) 
and 95% specificity (121 of 127) in differentiating patients 
with PSP from those with PD. Finally, an automated MRPI 
2.0 value of 2.29 showed 90% sensitivity (60 of 67) and 84% 
specificity (107 of 127) in differentiating the two groups. Simi-
lar classification performance was observed using manual mea-
surements. No evidence of differences was observed in AUC 
values for MP, MRPI, and MRPI 2.0 between automated and 
manual approaches (Table 4).

Discussion
In this study, we developed a fully automated, DL-based 
method using T1-weighted MR images that enables fast and 
accurate segmentation and measurement of brainstem and ven-
tricular areas most affected in patients with PSP. We observed 
a high spatial overlap between manual and DL-based masks 
of the midbrain, pons, MCP and SCP, and third ventricle and 
FHs (mean Dice coefficients > 0.85). For each region, high 
agreement was also observed between manual and automated 
planimetric measurements obtained using DL outputs (Spear-
man correlation coefficients > 0.80). Moreover, automated 
measurements showed high accuracy in differentiating patients 
with PSP from those with PD (AUCs > 0.92 for MP, MRPI, 
and MRPI 2.0).

Over the past few decades, several automated approaches 
have been proposed for defining brainstem and ventricular 
regions (13,16,17,19,30–32). Volumetric approaches have 
been developed to automatically assess brainstem and ven-
tricular atrophy in several pathologic conditions, using at-
las- and DL-based methods (16,18,19,30–33). In particular, 
DL-based methods implementing multidimensional gated 
recurrent units and three-dimensional convolutional neural 
networks with the U-Net architecture have been used this 
decade to perform accurate volumetry of the ventricles and 
brainstem, respectively (30,32). Although volumetric ap-
proaches could potentially be used to extract planimetric in-
formation from specific sections, it is important to note that 
this solution is not feasible for the particular brain regions 

Table 4: Diagnostic Performance of Automated and Manual MP, 
MRPI, and MRPI 2.0 in Differentiating Patients with PSP from Those 
with PD

Parameter Automated Manual P Value

MP
  Cutoff value <0.20 <0.20
  Sensitivity (%) 90 (60/67) 88 (59/67)
  Specificity (%) 96 (123/127) 95 (121/127)
  AUC 0.97 (0.94, 0.99) 0.97 (0.95, 0.99) >.99
MRPI
  Cutoff value >12.94 >13.00
  Sensitivity (%) 90 (60/67) 88 (59/67)
  Specificity (%) 95 (121/127) 94 (119/127)
  AUC 0.95 (0.92, 0.99) 0.95 (0.91, 0.99) .87
MPRI 2.0
  Cutoff value >2.29 >2.41
  Sensitivity (%) 90 (60/67) 87 (58/67)
  Specificity (%) 84 (107/127) 86 (109/127)
  AUC 0.92 (0.88, 0.97) 0.92 (0.88, 0.96) .97

Note.—AUCs are presented with 95% CIs in parentheses. Sensitivity and 
specificity are presented as percentages, with numerators and denominators 
in parentheses. AUC = area under the receiver operating characteristic curve, 
MP = midbrain to pons area ratio, MRPI = MR parkinsonism index, PD = 
Parkinson disease, PSP = progressive supranuclear palsy.
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investigated in our study due to the lack of a publicly avail-
able atlas for three-dimensional segmentation of the MCP on 
T1-weighted MR images. Moreover, calculating planimetric 
measures, such as the width of the SCP, requires the iden-
tification of specific planes to expose structures of interest, 
making the use of three-dimensional masks challenging and 
time-consuming.

Concerning planimetric assessments, automated methods 
aimed to identify regions of interest using information about 
the morphology and position of predefined brain structures 
(13,17). A thresholding-based approach was also used to 
separate each region from the background by comparing the 
intensity values of each pixel to a predefined threshold. More-
over, different threshold values were proposed for 1.5-T and 
3-T scanners (13). However, errors in the identification of 
automated anatomic landmarks may arise due to the changes 
in brain region dimensions associated with interindividual 
variability and pathologic conditions (6,17). Additionally, in 
the case of image noise and/or other imaging artifacts, us-
ing only first-order features, such as image intensity, may not 
be sufficient for an accurate brain MRI segmentation (34). 
To mitigate these problems, existing methods introduced a 
preprocessing step to register MR images to a standard space 
and then correct for fluctuation in intensity using the Free-
Surfer software package (https://surfer.nmr.mgh.harvard.edu/) 
(35). Nonetheless, a percentage of failures ranging from 4% 
to 7.5% was commonly reported for the automated segmen-
tation of brainstem and ventricular regions using the latter 
approaches (6,13,17). It is noteworthy that the addition of a 
preprocessing stage substantially increases calculation times 
(approximately equal to 15 minutes) and the amount of com-
putational resources, making these approaches difficult to use 
in clinical routines where the time available and the number 
of resources are often limited.

The present study extended prior efforts by proposing a new 
approach that uses DL models to perform a faster, more reli-
able, and generalizable segmentation of brainstem and ventric-
ular structures. Compared to previous approaches, our method 
requires solely an intensity-normalization preprocessing step to 
identify regions of interest without the need for a priori ana-
tomic information. This leads to a substantial reduction in seg-
mentation and measurement times (total computational time 
approximately equal to 2 minutes), while ensuring a negligible 
rate of failures (ie, 3%). Notably, our method outperforms the 
manual approach in terms of time, with the latter requiring 
approximately 10 minutes per individual for brainstem and 
ventricular segmentation and measurement.

In terms of segmentation accuracy, an average Dice value 
higher than 0.85 between manual and automated segmenta-
tions was observed for each brain region in controls, patients 
with PD, and patients with PSP. This suggests that the trained 
model can successfully perform accurate segmentations in 
pathologic conditions, such as PSP–Richardson syndrome, that 
are characterized by marked anatomic alterations in the brain-
stem and ventricular structures. Specifically, we found a mean 
Dice coefficient above 0.90 for the midbrain, pons, and ven-
tricular regions, in line with previous studies (16,19,30–33). 

A lower mean Dice coefficient (0.87) was found for the SCP, 
possibly due to its smaller size compared to the other regions 
under consideration. Similarly, concerning planimetric assess-
ment, manual and automated measurements showed a strong 
agreement (ρ > 0.80) in controls, patients with PD, and pa-
tients with PSP–Richardson syndrome. Finally, PSP imaging 
biomarkers (ie, MP, MRPI, and MRPI 2.0) computed using 
the DL-based method exhibited an AUC higher than 0.92 
in distinguishing between patient groups, consistent with 
previous classification studies using automated approaches 
(4,6,13,17). Notably, the cutoffs identified in this study are 
consistent with those previously reported in patients with PSP 
(6,13,14), thereby providing further evidence of the robustness 
of these MRI indices for PSP diagnosis.

Some limitations of the present study must be acknowl-
edged. First, manual delineation of the brainstem and ven-
tricular regions was performed by a single rater, although with 
more than 30 years of experience in the field of neuroradiology. 
Second, PD and PSP cases were not pathologically confirmed. 
Moreover, we considered only patients with PSP–Richardson 
syndrome, and further studies are needed to investigate the ro-
bustness and usefulness of our approach in other clinical sub-
types, such as PSP parkinsonism, and/or considering patients 
at early disease stages. Third, during the models’ training phase, 
we did not adopt early stopping criteria and cross-validation. 
Although this can lead to overfitting issues, the optimal segmen-
tation performance displayed by DL-based models in the inde-
pendent external test datasets indicates their generalizability on 
new MR images. Fourth, a min-max intensity normalization 
method was used to transform the image intensity range of MR 
images used as input to DL-based models. While this approach 
is commonly used to transform the intensity histogram to a 
0–1 range without affecting the image itself, it may be influ-
enced by outliers in the raw intensity values. Finally, although 
our results showed clear-cut differences between patients with 
PD and patients with PSP in MP, MRPI, and MRPI 2.0, it is 
important to highlight that these indices are computed based 
on brainstem and ventricular morphologic features that are sig-
nificantly correlated. A high degree of collinearity may increase 
the risk of observing statistically significant results by chance 
and make the determination of the individual contribution of 
each brain region to the indices challenging.

In conclusion, we showed that planimetric quantification 
of brainstem and ventricular substructures on T1-weighted 
MR images can be automatically and rapidly performed using 
a DL-based segmentation approach. Our DL-based segmenta-
tion method overcomes the limitations of the previous auto-
mated methods and has important implications in the field of 
neuroradiology. The possibility of using our solution to obtain 
a rapid and reliable computation of MRI biomarkers for PSP 
has the potential to lead to more widespread use of brainstem 
and ventricular planimetry in clinical practice. Moreover, DL 
masks might be used to extract information on tissue changes 
that go beyond the classical morphometric properties, such as 
radiomics features, thus providing complementary informa-
tion that could potentially improve the differential diagnosis 
between parkinsonian disorders.
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