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Model-based Gradient Search for Permutation Problems
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Global random search algorithms are characterized by using probability distributions to optimize problems.

Among them, generative methods iteratively update the distributions by using the observations sampled.

For instance, this is the case of the well-known Estimation of Distribution Algorithms. Although successful,

this family of algorithms iteratively adopts numerical methods for estimating the parameters of a model or

drawing observations from it. This is often a very time-consuming task, especially in permutation-based

combinatorial optimization problems.

In this work, we propose using a generative method, under the model-based gradient search framework, to

optimize permutation-coded problems and address the mentioned computational overheads. To that end, the

Plackett-Luce model is used to define the probability distribution on the search space of permutations. Not

limited to that, a parameter-free variant of the algorithm is investigated. Conducted experiments, directed

to validate the work, reveal that the gradient search scheme produces better results than other analogous

competitors, reducing the computational cost and showing better scalability.
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1 INTRODUCTION
In the last few decades, developing Global Random Search (GRS) algorithms [Zhigljavsky 1991]

has been a strong alternative to approach optimization problems, either in the continuous or

combinatorial domains. In a formal scheme of GRS, the algorithm involves some iterations and,

at each iteration 𝑡 , a “suitably” constructed distribution 𝑃𝑡 is sampled. The construction of the

distribution 𝑃𝑡 , and especially its suitability to get solutions of interest for the problem at hand, is a

critical part of GRS algorithms that conditions their behavior. In this sense, an important means of

constructing efficient global (non-uniform) random search algorithms relies on the idea that, in the

vicinity of good solutions (of a problem), it is possible to find better solutions. The corresponding
methods, which go under the name of generation methods, consist of sequential multiple sampling

of probability distributions where the good solutions drawn from 𝑃𝑡 at iteration 𝑡 are used to

construct the distribution 𝑃𝑡+1 at iteration 𝑡 + 1.
Although, neither the term Global Random Search (GRS) nor generation methods are frequently

referenced, these methods form the essence of numerous heuristic, metaheuristic, and machine

learning-based random search algorithms. In fact, we find a vast number of algorithms that

fall within the family of generation methods. To name a recent framework, evolutionary algo-

rithms have a consolidated trajectory using probability distributions, and Ant Colony Optimization

(ACO) [Dorigo et al. 2006], Estimation of Distribution Algorithms (EDAs) [Larrañaga and Lozano
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2001] or Particle Swarm Optimization (PSO) [Kennedy and Eberhart 1995] are some paradigmatic

examples. Similarly, in machine learning, we find algorithms such as Bayesian Optimization [Brochu

et al. 2010] that iteratively update a Gaussian Process to build a surrogate of the function to optimize.

However, using the algorithms above implies frequently large computational overheads. For

instance, implementing EDAs that consider probability models with some graph structure (such

as Bayesian or Markov Networks), or models for which exactly calculating the parameters is in

many cases impossible. As a result, numerical methods to approximate the Maximum Likelihood

Estimators (MLE) are used. Similarly, in the Bayesian Optimization paradigm, at each iteration, the

algorithm updates a Gaussian Process model which requires inverting a𝑚×𝑚 samples-matrix whose

complexity is known to be 𝑂 (𝑚3) (note that the number of samples𝑚 increases monotonically). It

would not be a problem at all unless both algorithm types are iterative, and the time-consuming steps

are repeated numerous times, generating large computational overheads. In fact, such overheads

make the algorithm impracticable when considering large problem sizes in EDAs, or numerous

samples in Bayesian Optimization.

The renewed interest in Gradient Search (GS), principally motivated by their usage in Neural

Network training [Kingma and Ba 2014; Ruder 2016], and also for optimizing continuous prob-

lems [Wierstra et al. 2014], has popularized this type of algorithm. Nevertheless, in the combinatorial

domain, the application of GS has been limited to a few works. Clearly, the main reason is that,

in a discrete space, there does not exist a well-defined notion of the gradient. Nevertheless, there

have been proposals [Berny 2001; Ollivier et al. 2017; Zlochin et al. 2004] to apply a model-based

approach that can enable the use of GS in the combinatorial case. The main idea consists of: (i)

optimizing the expected objective value of a random variable defined over the discrete space, and

(ii) defining the model underlying the random variable in terms of continuous parameters and such

that its probability density function is differentiable. In this way, a gradient can be defined and

computed over the parameters of the model.

Though this approach can be generally applied to practically any discrete search space, only

applications to binary problems have been observed in the literature [Berny 2000; Malagò et al.

2011; Ollivier et al. 2017], and other discrete search spaces have been mostly ignored so far in the

research.

In this paper, we aim to explore strategies which are different to the classical ones, but still

remain under the GRS paradigm, and overcome the enumerated drawbacks. To that end, we revisit

the preliminary work published in [Santucci et al. 2020] and formalize a Gradient Search (GS)

framework to optimize permutation problems that resolve the limitations of the classical approaches.

Specifically, we propose using the Plackett-Luce model and updating its parameters via gradient

search, instead of MLE. Not limited to that, an adaptive version of the algorithm that is free of

parameters is also proposed. The extensive experimentation carried out comparing GS to some

reference algorithms (under the Linear Ordering Problem (LOP) [Martí and Reinelt 2011]), reveals

that our proposal is able to produce good (even better) results, while solving the computational

overheads already enumerated.

The remainder of the paper is organized as follows. In Section 2, we provide preliminaries and

discuss related work on permutation problems and probability models for the permutation space.

Afterward, in Section 3 we present the main scheme of the proposed gradient search methodology

for permutation problems. The parameter-free procedures for the algorithmic parameters are

introduced in Section 4. Then, a thorough experimental study that includes other algorithms from

the literature is presented in Section 5. Finally, the work concludes in Section 6, which also provides

some insights for future work.
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2 PRELIMINARIES
In this section, the content related to the present work is summarized. For detailed explanations,

we refer the interested readers to address the bibliographic references provided in the text.

2.1 Permutations, Probability Models, and Combinatorial Problems
Permutations. A permutation is a bijection of the set {1, . . . , 𝑛} onto itself and 𝑛 is its size. We will

use the Greek letters 𝜋, 𝜎 and 𝛾 to denote them. In algebra, the group of all possible permutations

of size 𝑛 is referred to as the Symmetric Group S𝑛 , and its cardinality is 𝑛! [Diaconis 1988].

Permutations are among the richest combinatorial structures in combinatorics. Motivated princi-

pally by their versatility - ordered set of items, collection of disjoint cycles, rankings, transpositions,

matrices or graphs - permutations appear in a vast range of domains, thus problems whose solutions

are codified as permutations are quite common in combinatorial optimization. To name a few,

the Travelling Salesman Problem, the Quadratic Assignment Problem, the Flowshop Scheduling

Problem or the Linear Ordering Problem (LOP) fall within this range of problems [Ceberio 2014;

Santucci et al. 2019].

Probability models. As mentioned in the introduction, researchers in combinatorial optimization

have developed a great number of algorithms that, by means of probability models that induce a

particular distribution, try to approximate near optimal solutions. That is, a probability value is

assigned to each solution and the aim is to iteratively evolve such values in such a way that solutions

that have high quality receive high probabilities. Consequently, the expectancy of sampling new

solutions with high objective values is more likely. Although this approach is not novel in the field,

and integer, binary or continuous problems have been successfully addressed in the past, learning

and sampling probability distributions over the symmetric group is not so straightforward.

Modelling permutation data, either orderings or rankings
1
, has been extensively addressed in

the literature of probability and statistics since the beginning of the previous century. In this sense,

authors have named a number of probability models to deal with ranking data. It is not the aim of

this paper to enumerate each of the works proposed throughout the decades, however, there are

some reference authors that have reviewed them, and studied their properties. For detailed studies,

we refer the interested reader to Fligner and Verducci [1986, 1988], Critchlow et al. [1991], Marden

[1996], and more recently, Meila et al. [2012] and Irurozki et al. [2019].

In general, probabilitymodels for permutations have been divided into two big families: (1) distance-

based exponential models and (2) order statistic models. With respect to the first family, the most

well-known is the Mallows model [Mallows 1957] and its generalized form [Fligner and Verducci

1986]. The Mallows model is analogous to the normal distribution over the domain of permutations.

It is defined by two parameters, a central permutation 𝜎0 and a concentration parameter 𝜃 , and

the probability of any permutation decays exponentially with its distance to 𝜎0, measured with a

particular metric function 𝑑 . The probability of any 𝜎 is then calculated as

𝑃 (𝜎 |𝜎0, 𝜃 ) ∝ 𝑒−𝜃𝑑 (𝜎0,𝜎) .

The Generalized Mallows model is an extension of that model in which it is required that the metric

decomposes into a number of terms, and the model considers as many concentration parameters

𝜃 as terms in the decomposition. As noted in [Ceberio et al. 2015], choosing a suitable distance

metric is critical when approaching any optimization problem. In this trend, Irurozki et al. [2019]

reviewed, and also developed, efficient learning and sampling methods for the Kendall’s-𝜏 , Cayley,

Ulam and Hamming distance metrics on permutations.

1
We refer the interested reader to a detailed explanation by Marden [1996].
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With regard to the second family of models, we find those inspired by the order statistic model,
for which there are numerous references such as Thurstone [Thurstone 1927], Mosteller [Mosteller

1951] and Babington-Smith [Joe and Verducci 1993]. But probably the Bradley-Terry (BT) [Bradley

and Terry 1952] and Plackett-Luce (PL) [Luce 1959; Plackett 1975] models are the most relevant.

Parameterized by 𝑛 positive weightsw = (𝑤1, . . . ,𝑤𝑛), one per each item in the permutation, under

the BT model, the probability of item 𝑖 to be preferred to item 𝑗 is calculated as

𝑃 (𝑖 ≺ 𝑗) = 𝑤𝑖

𝑤𝑖 +𝑤 𝑗

,

where 𝑤𝑖 and 𝑤 𝑗 denote the weights associated to the items 𝑖 and 𝑗 . The preference relation is

translated to the permutation as the preference for 𝜎 (𝑖) < 𝜎 ( 𝑗), i.e., better rank.
Subsequently, the probability rule of the BT model is obtained by extending the previous expres-

sion to all pairwise comparisons within a permutation as

𝑃 (𝜎 |w) ∝
𝑛−1∏
𝑖=1

𝑛∏
𝑗=𝑖+1

𝑤𝜎 (𝑖)
𝑤𝜎 (𝑖) +𝑤𝜎 ( 𝑗)

.

The PL model is parameterized as the BT model, but follows a different strategy to generate the

probability distribution. Specifically, 𝑤𝑖 denotes the preference of item 𝑖 to appear in a top rank

and, the higher the rank, the more likely it is. So, the probability of an item 𝑖 to appear at the top

rank, is calculated as 𝑝𝑖 = 𝑤𝑖/(𝑤1 + . . . +𝑤𝑛). If we sample such distribution to choose an item for

the first position of the permutation, we remove it from the eligible set of items, and we repeat the

process, then, we are choosing the item for the second position of the permutation. Continuing

through the iterations, leaving aside the items already chosen in previous stages, then it is possible

to sample a permutation from w. Such process is summarized in Eq. 1.

𝑃 (𝜎 |𝒘) =
𝑛−1∏
𝑖=1

𝑤𝜎 (𝑖)∑𝑛
𝑗=𝑖 𝑤𝜎 ( 𝑗)

(1)

By intuition, the vector w can be normalized to sum 1, so that𝑤𝑖 becomes the probability that

the item 𝑖 is most preferred among the full set of items. The mode of the PL distribution is the

permutation that sorts the weights in descending order.

Either the Mallows and Generalized Mallows models [Ceberio et al. 2014], and the Bradley-Terry

and Plackett-Luce models [Alza et al. 2018] have been used with optimization purposes in the

framework of EDAs. However, from these references, we see that the estimation of models and

sampling imply very costly processes. In fact, in the first two, learning the MLE of the concentration

parameters requires running numerical methods such as Newton-Raphson, and similarly, the

Maximization-Minorization algorithm is required in the second two. Not only that, in the case

of BT, Metropolis-Hastings algorithms are run for sampling non-biased solutions. As a result,

although the models can be successfully fitted to the data, the large overheads introduced at each

iteration of the algorithms makes them unlikely to be applied in permutation problems
2
, and usually,

evaluation-intensive heuristics are preferred.

Case of study.With illustrative purposes, in this paper we have considered the Linear Ordering

Problem (LOP) as a case of study. Given a matrix B = [𝑏𝑖 𝑗 ]𝑛×𝑛 of numbers, the LOP consists of

finding the simultaneous permutation of rows and columns such that the sum of the entries allocated

in positions above the main diagonal is maximized. Formally, for any permutation solution 𝜎 , its

2
This drawback equally appears in EDAs that learn probabilistic graphical models, or other complex structure models.

However, the contribution of this paper is focused on permutation problems, and therefore, that review has been considered

out of the scope of the paper.
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objective value is calculated as 𝑓 (𝜎) = ∑𝑛−1
𝑖=1

∑𝑛
𝑗=𝑖+1 𝑏𝜎 (𝑖)𝜎 ( 𝑗) where 𝑛 is the number of rows/columns

of thematrix, and also the number of items of𝜎 . Then, any permutation𝜎 ∈ S𝑛 , describes a candidate
solution, as a result, the optimization becomes a challenging task with 𝑛! potential solutions in

the search space. In fact, it was proved to be an NP-hard problem many decades ago by Garey and

Johnson [1979]. A reference works on this problem is [Martí et al. 2012].

2.2 Gradient Search Optimization
Gradient Search. Optimizing objective or loss functions through gradient-based search algorithms

is a crucial task in the field of machine learning [Kingma and Ba 2014; Ruder 2016] and also in

many disparate computational problems such as, for instance, those addressed in [Hauswirth et al.

2016; Ma and Huang 2007; Wang 2008].

Given a differentiable objective function 𝑓 : R𝑛 → R that, without loss of generality, is required to
be maximized, the most basic Gradient Search (GS) technique – gradient ascent – tries to maximize 𝑓

by initially guessing a random solution 𝑥0 ∈ R𝑛 and then iteratively updating it by taking steps in

the direction of steepest ascent according to

𝑥𝑡+1 ← 𝑥𝑡 + 𝜂∇𝑓 (𝑥𝑡 ), (2)

where ∇𝑓 (𝑥𝑡 ) ∈ R𝑛 is the gradient of 𝑓 at the point 𝑥𝑡 ∈ R𝑛 , while 𝜂 > 0 is the learning rate param-

eter, which regulates the convergence speed of GS and has to be carefully set by the practitioner.

It is easy to prove that the iterative application of the update rule in Eq. (2) reaches a solution

which is only local optimal. Anyway, there are many cases where this is not a limitation. For instance,

in machine learning applications, the true gradient is usually approximated by considering a random

sample from a dataset. This makes the gradient computation stochastic and may allow the algorithm

to escape from local optima [Kleinberg et al. 2018]. Moreover, many other modifications to the

plain GS approach have been recently proposed for circumventing local optima (see e.g., [Ruder

2016] for a review).

Model-based Gradient Search. Evolution Strategies (ESs) [Beyer 1995; Beyer and Schwefel 2002]

can be seen as a form of gradient search which maximizes the expected objective value of a

probability model defined over the domain of an objective function 𝑓 : R𝑛 → R that, contrary to

the previous case, requires being neither differentiable nor analytically defined.

Formally, given a probability distribution over the solutions space R𝑛 , parameterized by 𝜃 ∈ R𝑚 ,

whose probability density function is denoted by 𝜙𝜃 : R𝑛 → R≥0 and such that it is differentiable

with respect to 𝜃 , 3 then a model-based GS scheme aims at maximizing 𝐽 (𝜃 ) = E [𝑓 (𝑥)], whose
gradient with respect to the model’s parameters is

∇𝜃 𝐽 (𝜃 ) = ∇𝜃
∫
R𝑛

𝑓 (𝑥)𝜙𝜃 (𝑥) 𝑑𝑥 =

=
∫
R𝑛

𝑓 (𝑥)∇𝜃𝜙𝜃 (𝑥) 𝑑𝑥 =

=
∫
R𝑛

𝑓 (𝑥)∇𝜃𝜙𝜃 (𝑥) 𝜙𝜃 (𝑥)
𝜙𝜃 (𝑥) 𝑑𝑥 =

=
∫
R𝑛

𝑓 (𝑥) [∇𝜃 log𝜙𝜃 (𝑥)] 𝜙𝜃 (𝑥) 𝑑𝑥 =

= E [𝑓 (𝑥)∇𝜃 log𝜙𝜃 (𝑥)] ,

(3)

where the first three equivalences are due to simple mathematical rules, the fourth line is due to

the so-called “log derivative trick”, while the last equivalence is the definition of the expectation

(taken over the solution space R𝑛).
Therefore, even if the proper objective function 𝑓 (𝑥) is not differentiable or not analytically

defined, the differentiability of 𝜙𝜃 (𝑥) allows the use of the GS scheme previously seen to iteratively

update 𝜃 in order to maximize 𝐽 (𝜃 ) that, as a sort of side effect, optimizes 𝑓 (𝑥) as well. In fact, it is

3
Note that, being 𝜙𝜃 a probability density function, we have that

∫
𝑥∈R𝑛 𝜙𝜃 (𝑥) = 1 and 𝜙𝜃 (𝑥) ≥ 0 for all 𝑥 ∈ R𝑛 .
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easy to see that 𝐽 (𝜃 ) is maximized when all the probability density is concentrated in (an arbitrarily

small neighborhood of) the solution 𝑥∗ = argmax 𝑓 (𝑥).
Practically, an estimate of the gradient in Eq. (3) is obtained by sampling 𝜆 solutions 𝑥1, . . . , 𝑥𝜆 ∈

R𝑛 from 𝜙𝜃 and then averaging as follows:

∇𝜃 𝐽 (𝜃 ) ≈
1

𝜆

𝜆∑︁
𝑖=1

𝑓 (𝑥𝑖 )∇𝜃 log𝜙𝜃 (𝑥𝑖 ). (4)

Eq. (4) introduces a further GS hyperparameter – the sample size 𝜆 ∈ N+ – and, by making the

gradient computation stochastic, also allows a better resilience to local optima.

Most of the (1 + 𝜆)-ES schemes in the literature [Bäck et al. 2013; Hansen and Ostermeier 1996;

Li et al. 2020] are (explicitly or implicitly) based on this approach. Usually, the probability model

takes the form of a (univariate or multivariate) Gaussian distribution, while sporadically a fat-tailed

distribution such as the Cauchy distribution is adopted (see e.g. [Yao and Liu 1997]). Moreover,

a fitness-based selection operator is often applied to restrict the set of sampled solution used to

estimate the gradient [Bäck et al. 2013].

Model-based Gradient Search for discrete spaces. The model-based GS approach can be

straightforwardly extended to a combinatorial optimization problem defined over a discrete solution

space Ω and whose objective function to maximize has the form 𝑓 : Ω → R. What is required is a

suitable probability model over Ω, parameterized by a vector 𝜃 ∈ R𝑚 and such that its probability

mass function 𝑝𝜃 : Ω → [0, 1] is differentiable with respect to 𝜃 .4

Analogously to the continuous case, the objective function maximized by GS is the expected

objective value

𝐽 (𝜃 ) = E[𝑓 (𝑥)] =
∑︁
𝑥 ∈Ω

𝑓 (𝑥)𝑝𝜃 (𝑥), (5)

whose true and estimated gradients are as follows:

∇𝜃 𝐽 (𝜃 ) = EΩ [𝑓 (𝑥)∇𝜃 log𝑝𝜃 (𝑥)] ≈
1

𝜆

𝜆∑︁
𝑖=1

𝑓 (𝑥𝑖 )∇𝜃 log𝑝𝜃 (𝑥𝑖 ). (6)

Eq. (6) exploits very similar relations to those provided in Eqs. (3) and (4). Moreover, all the

considerations previously made for the continuous case are valid also in the combinatorial case.

The only aspect to note is that, though in a finite combinatorial domain it is theoretically possible to

precisely compute the true gradient, the usually prohibitive size of Ω suggests that we approximate

it as before, i.e., by computing an estimate of the gradient on the basis of 𝜆 samples 𝑥1, . . . , 𝑥𝜆 ∈ Ω
drawn from the probability mass 𝑝𝜃 — as indicated in the right part of Eq. (6).

For the sake of clarity, we provide the pseudocode of the model-based GS for combinatorial

optimization in Algorithm 1, from which it is easy to see that an implementation of GS for the

discrete space Ω at hand mainly requires:

(1) a possibly unconstrained formal representation for the model parameters vector 𝜃𝑡 ,

(2) a procedure for sampling a solution from the probability model represented by 𝜃𝑡 (line 7), and

(3) a procedure for calculating the derivatives of the log-probability of a solution (line 9).

The very first attempts at using approaches similar to GS for optimizing discrete objective

functions were proposed in [Berny 2000, 2001, 2002; Zlochin et al. 2004], while a proper system-

atization was introduced in [Malagò et al. 2011] and [Ollivier et al. 2017], both of which also

extend the approach to the concept of natural gradient. However, all these works only address

discrete problems defined over bit-strings – arguably the most simple (and used) discrete space

4
Since it is a probability mass function, we have that

∑
𝑥∈Ω 𝑝𝜃 (𝑥) = 1 and 𝑝𝜃 (𝑥) ≥ 0 for all 𝑥 ∈ Ω.
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Algorithm 1 Gradient Search for Combinatorial Optimization

1: function GS(𝑓 : Ω → R, 𝜂 ∈ R+, 𝜆 ∈ N+)
2: initialize 𝜃0 in such a way that probabilities are uniformly distributed

3: 𝑥∗ maintains the best solution so far

4: 𝑡 ← 0

5: while stopping criterion is not met do
6: for 𝑖 ← 1 to 𝜆 do
7: sample 𝑥𝑖 ∈ Ω by drawing it from 𝑝𝜃𝑡
8: evaluate 𝑓 (𝑥𝑖 ) and update 𝑥∗ if improvement found

9: calculate ∇𝜃𝑡 log𝑝𝜃𝑡 (𝑥𝑖 )
10: end for
11: calculate ∇𝜃𝑡 𝐽 (𝜃𝑡 ) according to Eq. (6)

12: 𝜃𝑡+1 ← 𝜃𝑡 + 𝜂∇𝐽 (𝜃𝑡 )
13: 𝑡 ← 𝑡 + 1
14: end while
15: return 𝑥∗

16: end function

in combinatorial optimization. To the best of our knowledge, the only piece of research which

considers a model-based GS approach for permutation-based combinatorial optimization problems

is the preliminary paper proposed in [Santucci et al. 2020].

Model-based Gradient Search with natural gradient. Natural Evolution Strategies (NES) have

been introduced in [Wierstra et al. 2014] for continuous optimization problems and extends the

idea of model-based gradient search by considering the natural gradient in place of the plain

gradient. The use of the natural gradient in the context of search algorithms has been further

investigated in [Ollivier et al. 2017], which introduces a framework, named Information Geometric

Optimization (IGO), that tries to systematize and subsumes most of the gradient-based algorithms,

including NES, but also other algorithms such as the well known CMA-ES [Hansen 2016]. Moreover,

[Ollivier et al. 2017] also mentions the possibility of applying the natural gradient search in the

discrete solution space of binary problems. Another algorithm based on natural gradient has been

proposed in [Malagò et al. 2011], which considers an exponential family of distributions over

bit-strings. However, to the best of our knowledge, a practical NES implementation for the space of

permutations has never been proposed before.

A NES-like algorithm behaves like a model-based GS, except that the plain gradient is left-

multiplied with the inverse of the Fisher information matrix. Formally, given a solution space Ω
and 𝜆 samples 𝑥1, . . . , 𝑥𝜆 ∈ Ω obtained according to a suitable probability model parameterized by

𝜃 ∈ R𝑚 , the Fisher matrix and the update rule for 𝜃 are as follows:

𝐹 = E𝑋
[
∇𝜃 log𝑝𝜃 (𝑥) · (∇𝜃 log𝑝𝜃 (𝑥))𝑇

]
≈ 1

𝜆

𝜆∑︁
𝑖=1

∇𝜃 log𝑝𝜃 (𝑥𝑖 ) · (∇𝜃 log𝑝𝜃 (𝑥𝑖 ))𝑇 , (7)

𝜃𝑡+1 ← 𝜃𝑡 + 𝜂
(
𝐹−1 · ∇𝐽 (𝜃𝑡 )

)
. (8)

The vector 𝐹−1 · ∇𝐽 (𝜃𝑡 ) in Eq. (8) is the natural gradient, which is known to allow the search to

match the local space curvature imposed by the intrinsic characteristics of the chosen distribution

model [Amari 1998]. This, in turn, avoids the instability of the search when the variance of

the parameterized model decreases – a phenomenon that can be observed in plain model-based

GS [Wierstra et al. 2014]. However, although the improved stability may decrease the number
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of iterations required to converge, the computation of the natural gradient introduces a certain

overhead, as the inversion of a 𝑛 × 𝑛 matrix is known to cost 𝑂 (𝑛3) operations.

3 GRADIENT SEARCH METHODOLOGY FOR PERMUTATION PROBLEMS
Here we propose an implementation of the previously presented model-based gradient search

schemes for the combinatorial space of permutations. In particular, we will use the acronyms GS

and NES to denote the two variants of gradient search algorithms which use, respectively, the

plain gradient and the natural gradient. To the best of our knowledge, apart from the preliminary

work [Santucci et al. 2020], this is the first proposal of such schemes for the space of permutations.

We select the Plackett-Luce (PL) model described in Section 2.1 as probability distribution over

permutations. In fact, the PL model is suitable for our purposes because: (i) its parameters are

continuous, (ii) its probability mass function is efficiently differentiable, and (iii) it allows an efficient

and unbiased sampling.

Anyway, it is worthwhile to note that, according to Eq. (1), the PL model requires positive weight

parameters. Clearly, this constraint may be violated by the update rule of the parameters of a

GS algorithm. Therefore, instead of maintaining the true PL weights𝑤 ∈ R𝑛>0, we maintain their

logarithms

𝑧 = log𝑤. (9)

In this way, the log-weights in 𝑧 ∈ R𝑛 have no constraint, while the original and positive PL weights
can be easily recovered as 𝑤 = exp 𝑧. Hence, the probability of a permutation 𝜎 ∈ S𝑛 , given the

log-weights 𝑧, is defined as

𝑃 (𝜎 |𝑧) =
𝑛−1∏
𝑖=1

exp 𝑧𝜎 (𝑖)∑𝑛
𝑗=𝑖 exp 𝑧𝜎 ( 𝑗)

. (10)

Therefore, according to the general case formulation provided in Eq. (5), a model-based GS

scheme optimizes the objective function 𝑓 : S𝑛 → R of the permutation problem at hand, by

following the trajectories induced by the gradient of

𝐽 (𝑧) = E[𝑓 (𝜎)] =
∑︁
𝜎 ∈S𝑛

𝑓 (𝜎)𝑃 (𝜎 |𝑧) . (11)

A further modification to the algorithmic scheme is introduced in order to make it invariant to

monotonic transformations of the objective function: a desirable property in a lot of real-world

applications. Bearing this in mind, note that the gradient of the expected objective value, as shown

in Eq. (6), clearly depends on the objective values. Therefore, we introduce a utility function

which reshapes the objective values at every iteration by considering their ranks, thus making the

algorithm invariant to monotonic transformation of the objective function.

The pseudocode of the “Plackett-Luce”-based GS and NES schemes is provided in Algorithm 2.

The method requires as input: the objective function 𝑓 to be (without loss of generality) maximized,

the learning rate 𝜂, the sample size 𝜆, and a utility function𝑈 .

In line 2, the 𝑧 parameters are initialized to the same value, thus making the PL model equivalent

to a uniform distribution over S𝑛 . Hence, the PL-based algorithms have no initialization bias.

At any iteration of the main loop of lines 4–24, the 𝑧 parameters are updated as follows. First,

𝜆 permutations are drawn from the current PL distribution (line 6) and their objective value is

evaluated (line 7). Then, the gradients of the log-probabilities (line 8) and the utilities (line 10) are

used to calculate the plain gradient in line 11. Thus, in the GS case, a 𝛿 vector is directly set to the

plain gradient (line 13) while, in the NES case, 𝛿 is set by also considering the inverse of the Fisher

matrix (lines 15–17). In line 19, the 𝛿 vector is scaled by the learning rate and used to update the PL

parameters. Before moving to the next iteration, if any numerical problem was observed in the
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Algorithm 2 Pseudocode of the “Plackett-Luce”-based GS and NES schemes

Input: 𝑓 : S𝑛 → R, 𝜂 ∈ R+, 𝜆 ∈ N+, 𝑈 : R𝜆 → R𝜆
1: 𝑡 ← 0

2: 𝑧𝑡 ← (0, 0, . . . , 0) ⊲ Uniform distribution

3: 𝜎∗ maintains the best permutation so far

4: while stopping criterion is not met do
5: for 𝑖 ← 1 to 𝜆 do
6: draw 𝜎𝑖 from the PL model parameterized by 𝑧𝑡
7: evaluate 𝑓 (𝜎𝑖 ) and update 𝜎∗ if an improvement is found

8: 𝑔𝑖 ← ∇𝑧𝑡 log 𝑃 (𝜎𝑖 |𝑧𝑡 ) ⊲ See Eq. (12)

9: end for
10: 𝑢1, 𝑢2, . . . , 𝑢𝜆 ← 𝑈 (𝑓 (𝜎1), 𝑓 (𝜎2), . . . , 𝑓 (𝜎𝜆)) ⊲ See Algorithm 3

11: ∇𝐽 (𝑧𝑡 ) ← 1

𝜆

∑𝜆
𝑖=1 𝑢𝑖𝑔𝑖

12: if plain gradient case then
13: 𝛿 ← ∇𝐽 (𝑧𝑡 )
14: else natural gradient case
15: 𝐹 ← 1

𝜆

∑𝜆
𝑖=1 𝑔𝑖 · 𝑔𝑇𝑖

16: calculate the matrix inversion 𝐹−1

17: 𝛿 ← 𝐹−1 · ∇𝐽 (𝑧𝑡 )
18: end if
19: 𝑧𝑡+1 ← 𝑧𝑡 + 𝜂𝛿
20: if numerical problems occurred then
21: 𝑧𝑡+1 ← almost degenerate PL distribution with 𝜎∗ as mode ⊲ Soft restart

22: end if
23: 𝑡 ← 𝑡 + 1
24: end while
25: return 𝜎∗

current step, the 𝑧 parameters are reinitialized by setting the best so far solution as mode of the PL

distribution (line 21). Finally, the best permutation sampled is returned in line 25.

In the following subsections we describe: the efficient PL sampling procedure, the computation

of the gradient of the PL log-probability, the objective value shaping scheme used to define the

utility function and, finally, the soft restart mechanism used to overcome the numerical problems.

3.1 The PL sampling procedure
Sampling a permutation from a PL distribution can be efficiently performed by exploiting the

so-called “Gumbel top-𝑘 trick” as outlined in [Kool et al. 2019].

Using this methodology, a permutation 𝜎 ∈ S𝑛 can be sampled from a PL distribution param-

eterized by 𝑧 ∈ R𝑛 as follows. First, generate a vector 𝜈 formed by 𝑛 numbers taken uniformly

at random from the interval [0, 1], so 𝜈 ∈ [0, 1]𝑛 . Then, compute the standard Gumbel random

variables 𝜀𝑖 = − log(− log𝜈𝑖 )), for 𝑖 = 1, . . . , 𝑛, and finally set 𝜎 = arg sort(𝑧 + 𝜀).
Practically, the 𝜎 entries are set to the ranks of the PL weights perturbed by a Gumbel distributed

noise. The ranks are obtained by sorting, thus the computational complexity of the sampling

procedure is Θ(𝑛 log𝑛).
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3.2 Gradient of the PL log-probability
In order to implement the PL-based gradient search schemes, a formula is required for computing

the gradient of the PL log-probability (line 8 of Algorithm 2).

Given a permutation 𝜎 ∈ S𝑛 and an unconstrained PL parametrization 𝑧 ∈ R𝑛 , then, by using

some calculus, it is possible to derive a formula for the 𝜎 (𝑖)–th partial derivative of log 𝑃 (𝜎 |𝑧), as
follows:

𝜕 log 𝑃 (𝜎 |𝑧)
𝜕𝑧𝜎 (𝑖)

= 1 − exp 𝑧𝜎 (𝑖)
𝑖∑︁

𝑘=1

1∑𝑛
𝑗=𝑖 exp 𝑧𝜎 ( 𝑗)

. (12)

These partial derivatives all together form the gradient ∇𝑧 log 𝑃 (𝜎 |𝑧) required by line 8 of

Algorithm 2. Interestingly, this computation can be efficiently implemented because, with simple

bookkeeping and by following the order induced by 𝜎 , it is possible to calculate all the 𝑛 entries of

∇𝑧 log 𝑃 (𝜎 |𝑧) with Θ(𝑛) time steps.

3.3 Utility function
On the basis of the preliminary experiments conducted in [Santucci et al. 2020], here we consider

the super linear utility function as defined in Algorithm 3.

Algorithm 3 Super Linear utility function

1: function U(𝑓1, 𝑓2, . . . , 𝑓𝜆)

2: 𝑟1, 𝑟2, . . . , 𝑟𝜆 ← arg sort(𝑓1, 𝑓2, . . . , 𝑓𝜆) ⊲ The sorting is from the best to the worst objective

value

3: 𝜇 ← 𝜆/2
4: 𝑇 ← ∑𝜇

𝑖=1
exp 𝑖

5: for 𝑖 ← 1 to 𝜆 do
6: if 𝑟𝑖 ≤ 𝜇 then
7: 𝑢𝑖 ← exp(𝜇 + 1 − 𝑟𝑖 )/𝑇
8: else
9: 𝑢𝑖 ← 0

10: end if
11: end for
12: return 𝑢1, 𝑢2, . . . , 𝑢𝜆
13: end function

Given the 𝜆 objective values 𝑓1, . . . , 𝑓𝜆 , Algorithm 3 generates the corresponding utilities𝑢1, . . . , 𝑢𝜆
as follows. The objective values are sorted from best to worst, thus that the rank 𝑟𝑖 ∈ {1, . . . , 𝜆} of
any objective value 𝑓𝑖 is computed (line 2). Then, the 𝜇 = 𝜆/2 best samples receive a utility which is

exponentially proportional to 𝜇 + 1 − 𝑟𝑖 (line 7), while a null utility is assigned to the worst samples

(line 9). Finally, note that the returned utilities sum up to 1.

Since utilities are used to weight the samples for the gradient computation at each single iteration

of the main algorithm (see line 11 of Algorithm 2), this scheme allows us to:

• make the main algorithm invariant to monotonic transformation of the objective function to

optimize (because utilities are calculated only on the basis of the objective value ranks);

• equally weight different iterations of the main algorithm (since utilities always sum up to 1),

thus making the search less influenced by unfortunate iterations with large steps;

• increasingly award higher ranking samples (since utility values exponentially decay) and

nullify the impact of bad samples (because worst samples receive null utilities);

• efficiently calculate the utilities with a computational cost of Θ(𝜆 log 𝜆).
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3.4 Soft restart
As iterations pass, the search naturally moves from the initial exploratory behaviour to a later

exploitative behaviour. This is a phenomenon common to any iterative optimization heuristic

that, in model-based gradient search schemes, results in the tendency of the probability model

to converge towards a configuration where almost all the probability mass is concentrated on a

single solution. When this happens, two issues may arise: (i) the search gets trapped into a local

optimal configuration, and (ii) the PL weights get sparser and the computation of the log-probability

gradient may result in numerical stability problems.

To address these issues, we devised a simple soft restart mechanism (see lines 20–22 of Al-

gorithm 2). At every iteration of the algorithm, we verify if a computation resulted in a inf or

nan value and, if so, the PL weights are reset to a configuration whose mode is the best so far

permutation 𝜎∗ and such that

𝑃 (𝜎∗ |𝑤) >
(
1 − 1

𝑠

)𝑛−1
, (13)

where 𝑠 > 1 is a suitable lower bound between consecutive PL weights to be chosen. Note that

inequality (13) shows that, as 𝑠 → ∞, the probability of the mode permutation tends to 1, thus

concentrating the probability mass in a narrow neighborhood of 𝜎∗ for a suitable choice of 𝑠 .
For the sake of clarity, in order to explain the Inequality (13) we use the classical parameteriza-

tion𝑤 of the PL probability mass function as given in Eq. (1). Formally, we have𝑤𝜎∗ (𝑖)/𝑤𝜎∗ (𝑖+1) ≥ 𝑠 ,

with 𝑠 > 1, for 𝑖 = 1, . . . , 𝑛. This implies that any factor in the product of Eq. (1) is larger than

1 − 1/𝑠 , thus the Inequality (13) follows straightforwardly.

Therefore, to have the probability guarantee of Inequality (13), it is enough to set the PL weights,

following the order induced by 𝜎∗, such that the ratio of consecutive weights is 𝑠 . Moving to our

unconstrained reparameterization of PL by log-weights, this translates to equally spacing the values

𝑧𝜎∗ (1) , . . . , 𝑧𝜎∗ (𝑛) such that 𝑧𝜎∗ (𝑖) − 𝑧𝜎∗ (𝑖+1) = log 𝑠 . Hence, we simplify the definition by selecting

an interval [lb, ub] for the 𝑧 log-weights, such that:

𝑧𝜎∗ (𝑖) ← ub − (𝑖 − 1)
(
ub − lb
𝑛 − 1

)
for 𝑖 = 1, . . . , 𝑛, (14)

where the fractional factor is actually equivalent to log 𝑠 , and it is easy to see that 𝑧𝜎∗ (1) = ub and
𝑧𝜎∗ (𝑛) = lb are the two extreme values, while the other log-weights are linearly assigned in the

interval [lb, ub].
After some experimentation, lb and ub were set to, respectively, −10 and 10, independently of 𝑛.

This setting was not affected by numerical problems in our experimentation and it guarantees that

the drawn permutations (in the next algorithm iteration) are similar but not equal to 𝜎∗, thus avoid
moderate search stagnation.

4 PARAMETER ADAPTATION
The proposed scheme has two (hyper)parameters: the learning rate 𝜂 ∈ R+ and the sample size

𝜆 ∈ N+. While 𝜂 impacts on the convergence speed of the search and its proneness to escape from

stagnation states, 𝜆 has implications both on the learning accuracy of the PL model and on the

efficiency of the search (counted as number of objective function evaluations).

Both the parameters can be tuned offline by a trial-and-error approach based on a given experi-

mental design (as done, for instance, in [Santucci et al. 2020]). However, due to the variability of

the characteristics of the problem instances, a parameter setting which works well for a particular

problem instance may not be suitable for another. Moreover, even inside a single execution, there

may be different temporal stages where different parameters settings fit well with the current
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search state, possibly in accordance with the incumbent configuration of the PL weights. In light of

this, it is apparent how important an online adaptation scheme for the 𝜂 and 𝜆 parameters is.

Having considered that, here we introduce online adaptation schemes for both the learning rate

and the sample size. Therefore, we will denote with 𝜂𝑡 and 𝜆𝑡 , respectively, the learning rate and

the sample size at iteration 𝑡 . The 𝜂𝑡 adaptation is introduced in Section 4.1, while the 𝜆𝑡 adaptation

is presented in Section 4.2.

4.1 Adaptation of the Learning Rate
The learning rate adaptation is based on the Cumulative Step-size Adaptation (CSA) scheme,

which has been originally introduced in the context of Evolution Strategies based on Gaussian

mutations [Chotard et al. 2012; Hansen and Ostermeier 1996; Ostermeier et al. 1994a,b]. The main

idea of CSA is to increase or decrease the learning rate in order to speedup or slowdown the search

when the previously taken steps in the search trajectory, respectively, agree or disagree on their

direction.

Here, we introduce a particular version of CSA suited to the characteristics of the Plackett-Luce

model. To the best of our knowledge, this is also the first CSA implementation for a non-Gaussian

model.

After choosing a suitable initial learning rate 𝜂0, the CSA version we propose dynamically sets 𝜂𝑡 ,

at any iteration 𝑡 > 0, on the basis of 𝜂𝑡−1 and the search history up to iteration 𝑡 , according to

𝜂𝑡 = 𝜂𝑡−1 exp

(
∥𝜌𝑡 ∥
ℓ
− 1

)
, (15)

where: | | · | | denotes the Euclidean norm of a vector, 𝜌𝑡 ∈ R𝑛 is the cumulative path vector that

synthesizes the search history up to iteration 𝑡 , and ℓ is a constant representing the expected length

of a random walk in R𝑛 .
Before formally defining 𝜌𝑡 and ℓ , for the sake of understanding, we depict the rationale of

Eq. (15). The argument of the exp function implements a sort of “graded comparison” between the

observed length of the cumulative path, i.e., | |𝜌𝑡 | |, and the expected length under a hypothetical

random search behaviour, i.e., ℓ . Therefore, when the previous search steps point towards the

same or a similar direction, we will have | |𝜌𝑡 | | > ℓ , thus the exp argument is positive and Eq. (15)

increases 𝜂𝑡 with respect to its previous value. Conversely, when the previous search steps point

towards opposite or almost opposite directions, we will have | |𝜌𝑡 | | < ℓ , thus the exp argument

is negative and Eq. (15) decreases 𝜂𝑡 with respect to its previous value. Basically, ℓ is used as a

threshold value to which we compare the observed historical directions – synthesized by 𝜌𝑡 – of

the search. The rationale is to speed up the search when there is consensus over time towards a

direction and, conversely, to slow down the movements when the search starts to appear chaotic.

Definition of the cumulative path vector. The cumulative path is initialized to the zero-vector,

i.e., 𝜌0 = 0. Then, by denoting the last movement vector with 𝛿𝑡 – i.e., 𝛿𝑡 = ∇𝐽 (𝑤̃𝑡 ) for the plain
gradient version and 𝛿𝑡 = 𝐹−1 · ∇𝐽 (𝑤̃𝑡 ) for natural gradient version – and its normalization with

ˆ𝛿𝑡 , i.e., ˆ𝛿𝑡 =
𝛿𝑡
| |𝛿𝑡 | | , the cumulative path is iteratively updated according to

𝜌𝑡 = (1 − 𝑟 )𝜌𝑡−1 + ˆ𝛿𝑡 , (16)

where 𝑟 ∈ [0, 1] is a hyperparameter which regulates the weight of the previous cumulative path

with respect to the last direction vector. In this way, all the directions of the search movements up

to iteration 𝑡 are accumulated in 𝜌𝑡 .

Moreover, note that the importance of a direction vector exponentially decays with the iterations.

In fact, as a consequence of Eq. (16), a direction vector has a mean lifetime of 1/𝑟 iterations,
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i.e., after 1/𝑟 iterations it accounts for no more than 1/𝑒 ≈ 37% of the cumulative path. For this

reason, we set the hyperparameter 𝑟 in such a way that the mean lifetime of a direction vector

increases together with the dimensionality 𝑛 thus, after some preliminary experiments, we chose

1/𝑟 =
√
𝑛 =⇒ 𝑟 = 1/

√
𝑛.

Definition of the expected length of a random walk. Now, in order to finalize the definition

of Eq. (15), we need to formally derive the value of the constant ℓ , i.e., the expected length of a

random walk in R𝑛 with exponentially decaying step-sizes.

Firstly, let us motivate why we follow this choice for the definition of ℓ . With this in mind, note

that the cumulative path definition of Eq. (16) can be unrolled to

𝜌𝑡 =

𝑡−1∑︁
𝑖=0

(1 − 𝑟 )𝑖 ˆ𝛿𝑡−𝑖 . (17)

Hence, 𝜌𝑡 is the weighted sum of 𝑡 unit vectors with weights taken from the geometric progression

with common ratio 1 − 𝑟 . Therefore, the length of each vector accumulated in 𝜌𝑡 is (1 − 𝑟 )𝑖 , for
𝑖 = 0, . . . , 𝑡 − 1. Since the directions of the vectors

{
ˆ𝛿𝑖 ∈ R𝑛

}
are a consequence of the search

behaviour so far, we can make decisions about the speed of the search by comparing the cumulative

path vector with the expected length of a random walk formed by independent and uniformly

distributed unit vectors {𝑑𝑖 ∈ R𝑛 : | |𝑑𝑖 | | = 1}, with 𝑖 = 0, . . . , 𝑡 − 1, weighted as in Eq. (17).

To simplify the calculations, we extend the summation to an infinite number of terms
5
and we

define ℓ as

ℓ = E

[



 ∞∑︁
𝑖=0

(1 − 𝑟 )𝑖𝑑𝑖




] . (18)

Hence, by squaring both sides of Eq. (18), it is possible to write:

ℓ2 =
∑∞

𝑖=0 (1 − 𝑟 )2𝑖E [𝑑𝑖 · 𝑑𝑖 ] + 2
∑∞

𝑖=0

∑∞
𝑗=𝑖+1 (1 − 𝑟 )𝑖+𝑗E

[
𝑑𝑖 · 𝑑 𝑗

]
=

=
∑∞

𝑖=0 (1 − 𝑟 )2𝑖 =
= 1

2𝑟−𝑟 2 ,
(19)

which can be explained as follows. The first equivalence exploits the linearity of the expected value

operator and simple arithmetic calculations. The second equivalence derives from the facts that

the dot product of a unit vector by itself is 1 and that two independent and identically distributed

vectors are orthogonal in expectation, thus their dot product is 0. Lastly, it is easy to see that the

expression in the second line is a geometric series with common ratio (1− 𝑟 )2 and this explains the
last equivalence in Eq. (19). It is now straightforward to derive the value of ℓ as

ℓ =
1

√
2𝑟 − 𝑟 2

, (20)

thus, by using the previously discussed setting 𝑟 = 1/
√
𝑛, we have ℓ =

(
2√
𝑛
− 1

𝑛

)− 1

2

, which is a

function of only the search space dimensionality 𝑛.

4.2 Adaptation of the sample size
A good strategy to adapt the sample size 𝜆 ∈ N+ is to regulate it on the basis of an indicator of the

spread of the PL model. Intuitively, when the PL model is very spread and similar to a uniform

distribution, a relatively large number of samples is required to have a better gradient estimation.

Conversely, when the PL model is concentrated in a small neighborhood of its mode, then it is

5
Regarding this, note that the weights (1 − 𝑟 )𝑖 quickly decay with 𝑖 →∞, thus our approximation is reasonable.
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likely that most of the samples are very similar or even identical in extreme situations, thus not

helping very much to improve the gradient estimation and also wasting time for the evaluation of

duplicate solutions.

Moving from these considerations, here we propose a sample size adaptation scheme which is

based on a spread measure of the current configuration of the PL model. A good spread measure is

the entropy of the PL distribution, but its computation is clearly infeasible. Fortunately, we can

derive good indications about the spread of the PL model by only considering its current weights

– or log-weights – at any iteration of the gradient search scheme.

Formally, given the log-weights 𝑧 ∈ R𝑛 , we consider the probabilities of each item 𝑖 ∈ {1, . . . , 𝑛}
being in the first position of the sampled permutation, that is given by

𝑝𝑖 =
exp 𝑧𝑖∑𝑛
𝑗=1 exp 𝑧 𝑗

. (21)

We also note that the vector 𝑝 ∈ R𝑛 represents a proper multinomial distribution since

∑𝑛
𝑖=1 𝑝𝑖 = 1

and 𝑝𝑖 ≥ 0, for 𝑖 = 1, . . . , 𝑛. Therefore, we compute the normalized entropy 𝐻 ∈ [0, 1] of this
multinomial distribution as usual:

𝐻 = −
∑𝑛

𝑖=1 𝑝𝑖 log𝑝𝑖

log𝑛
. (22)

We now argue that 𝐻 is a good indicator of the true entropy of the PL distribution modeled by

the log-weights 𝑧 at hand. In fact, when all the weights are equal, it is easy to see that the PL model

reduces to a uniform distribution over the permutations and that 𝐻 = 1. Conversely, when the

minimum ratio between a pair of PL weights tends to infinity, i.e., when min𝑧𝑖 ≥𝑧 𝑗 {exp𝑧𝑖/exp𝑧 𝑗 } → ∞,
we have that 𝐻 → 0. Hence, since it is known that very sparse PL weights result in an almost-

degenerate distribution concentrated around the mode permutation, this is in accordance with the

true PL entropy.

Therefore, after choosing a suitable initial sample size 𝜆0, at any iteration 𝑡 , we dynamically

adapt the sample size 𝜆𝑡 on the basis of the entropy-like measure of the PL spread as follows:

𝜆𝑡 = 𝜆lower + 𝐻𝑡

(
𝜆upper − 𝜆lower

)
, (23)

where 𝐻𝑡 ∈ [0, 1] is the entropy-like indicator for the current iteration as given in Eq. (22), while

𝜆lower and 𝜆upper are, respectively, the lower and upper bound for the sample size. After a few

preliminary experiments, we set 𝜆lower = 10 and 𝜆upper = 1000.

In this way, we have that the sample size is dynamically adapted inside the interval [𝜆lower , 𝜆upper ]
by moving towards 𝜆lower or 𝜆upper when, respectively, the PL model gets very concentrated or very

spread.

5 EXPERIMENTAL STUDY
In what follows, a comprehensive experimental study is presented. It is the aim of this section

to introduce a rigorous validation of the proposed gradient search algorithm, and compare it to

other literature proposals that iteratively update probability distributions. In fact, we do not set out

to obtain state-of-the-art results but to understand the behavior of the evaluated algorithms, and

to identify the strong points, as well as weaknesses. To that end, taking the paper [Santucci et al.

2020] as starting point, we have extended the experimentation by considering larger instances,

other state-of-the-art paradigms, and a deeper analysis in the convergence and scalability of the

proposal.
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5.1 Experimental setting
Case of study. In order to carry out the experimentation, we have chosen the Linear Ordering

Problem as case study [Martí and Reinelt 2011]. Regarding the optimization instances, we have

considered the well-known IO benchmark of 50 instances with sizes varying from 44 to 79, and

the xLOLIB benchmark [Schiavinotto and Stützle 2003] with 78 instances of size 𝑛 = 150 and 250,

respectively
6
.

Algorithms.We have included three algorithms in the comparison: the gradient search approaches

using both the plain gradient (GS) and the natural gradient (NES) are contrasted to an estimation

of distribution algorithm (EDA) [Ceberio et al. 2013] based on the Plackett-Luce model. Moreover,

when the parameter-free version of GS and NES are adopted, we denote them by GS* and NES*.

The parameters of GS and NES are tuned offline as described in Section 5.2, while for GS* and

NES* the two adaptation schemes described in Section 4 are adopted. With this regard, note that

the learning rate and sample size are initialized to the choice made in the parameter tuning and

described in the next section, while 𝜂𝑡 is also clipped in the range [0.0001, 0.9].

Computing infrastructure. The experimentation was conducted on a cluster of 55 nodes, each

one equipped with two Intel Xeon X5650 CPUs and 64GB of memory.

5.2 Tuning and impact of the parameters
In order to maximize the performance of the algorithms, it is important to properly set the pa-

rameters of GS, in this case, 𝜂 (learning rate) and 𝜆 (sample size) parameters. To that end, we

have performed a grid search for the two parameters, either for GS and NES. Particularly, the

values {0.001, 0.01, 0.05, 0.1, 0.5, 0.75, 0.9} for 𝜂 and {10, 102, 103, 104} for 𝜆 have been considered.

In addition, five instances of different sizes from the IO benchmark, and eight instances from the

xLOLIB benchmark have been chosen
7
. For each instance, algorithm and parameter combination,

10 repetitions were executed, each of which with a limit of 1000𝑛2 function evaluations. Due to

the different size of the instances, and the expected variation of the performance of the algorithms

with their size, the tuning was performed separately for IO, xLOLIB 𝑛 = 150 and xLOLIB 𝑛 = 250.

To statistically assess the differences among the different alternatives (combination of parameters),

a Bayesian performance analysis was carried out [Rojas-Delgado et al. 2022]
8
. The outcome of the

analysis is summarized in Fig. 1 in the form of credibility intervals. In the 𝑦-axis of the plots the

different parameter combinations are listed, and for each case, a credibility interval is depicted. Such

interval, formed with a green dot (the expectancy) and a range of values, describes the probability of

that combination being the best alternative among the compared ones. The values needed to build

the intervals are obtained by sampling the posterior distribution of the Bayesian model computed.

For the GS algorithm, the analysis suggests that there is no combination that is superior to the

rest, at least 8 alternatives overlap at probability 0.08, however, 𝜆 = 100 and 𝜂 = 0.5, seems to be the

preferred setting with the highest expected probability of winning for IO, and 𝜆 = 100 and 𝜂 = 0.05,

and 𝜆 = 1000 and 𝜂 = 0.1 for 𝑛 = 150 and 𝑛 = 250, respectively. With regard to NES, 𝜆 = 100 and

𝜂 = 0.75, is the best option for the IO benchmark, and 𝜆 = 10 and 𝜂 = 0.5 for 𝑛 = 150 and 𝑛 = 250.

In addition, the raw results collected in the tuning of the parameters are plotted in Fig. 2 as scatter

plots with 𝑥 and 𝑦-axes depicting execution time and normalized 𝑓 9, respectively. Specifically, each

6
Both benchmarks can be found at: https://grafo.etsii.urjc.es/optsicom/

7
The instances included in the parameters tuning are N-be75eec, N-stabu70, N-t59b11xx, N-tiw56n54, N-usa79, N-be75eec_150,
N-be75eec_250, N-stabu1_150,N-stabu1_250, N-t59b11xx_150, N-t59b11xx_250, N-tiw56n54_150 and N-tiw56n54_250.
8
A detailed procedure for the analysis is provided in [Rojas-Delgado et al. 2022].

9 𝑓 is normalized by calculating the relative deviation with respect to the best known results reported in [Santucci and

Ceberio 2020].
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Fig. 1. Credibility intervals of the evaluated parameter settings for the GS and NES, for the IO benchmark,
and the group of instances of size 𝑛 = 150 and 𝑛 = 250 from the xLOLIB benchmark. The intervals describe
for each setting the probability of being the best option, based on the experimental data provided.

point in the plot represents a repetition of the algorithm, colors denote 𝜆 and the size of the points

is proportional to 𝜂. Plots reveal that GS and NES are differently affected by the parameter settings.

For GS, good results are subject to high 𝜂 values, while, for NES, good results rely on the number

of samples used, large values are preferred. In general, it seems that NES requires more execution

time than GS, obtaining worse results.

Finally, for EDA, the parameters reported in the original paper [Ceberio et al. 2013] have been

adopted.

5.3 Effectiveness and efficiency analysis
Using the parameters tuned in the previous section, 20 repetitions of the GS, EDA and NES

algorithms have been performed on the mentioned benchmarks, and each algorithm was run a

maximum number of 1000𝑛2 evaluations. Results are summarized in Tables 1 and 2
10
as Median

Relative Deviations (MRD) with respect to the best known results reported in [Santucci and Ceberio

2020].

According to the conducted experiments, GS obtained better results in 43 instances out of 50

instances in the IO benchmark, EDA did so in 7 instances, and NES did not succeed in any instance.

In the case of the xLOLIB benchmark, for 𝑛 = 150, GS was preferred in the great majority of

29 instances out of 39. EDA only outperformed GS in two instances. Again, NES was the worst

performing strategy, obtaining errors three times higher to the best proposal. For 𝑛 = 250, GS and

EDA have similar results, being GS better (wins in 25 instances out of 39), and NES, again, is the

worst algorithm.

10
See Appendix A for Table 2.
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Fig. 2. Each of the executions performed for the different parameter settings and repetitions of the GS
and NES on the IO and xLOLIB benchmarks is depicted. The 𝑥-axis is the execution time and the 𝑦-axis
corresponds to the relative deviation of the objective value with respect to the best known results. The size of
the points is proportional to the value of 𝜂. Colors denote the value of 𝜆.

Fig. 3. Average execution time (log seconds) of each run of the GS (red), EDA (blue) and NES (green) algorithms
for running 1000𝑛2 evaluations.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:18 Anon.

Table 1. Results of the GS (𝜆 = 100, 𝜂 = 0.5), EDA and NES (𝜆 = 100, 𝜂 = 0.75) for the LOP instances in the IO
benchmark. The Median Relative Deviations (MRD) measures of the values found across the 20 repetitions of
the best known results are reported. Results in bold highlight the algorithm that obtained the lowest MRD. A
maximum number of 1000𝑛2 evaluations were performed by each of the algorithms.

Size Instance Best Known GS EDA NES Size Instance Best Known GS EDA NES

50 N-be75eec 236464 0.00955 0.00986 0.01312 44 N-t70k11xx 60659200 0.00108 0.00311 0.00963

50 N-be75np 716994 0.00185 0.00425 0.00816 44 N-t70l11xx 25253 0.00000 0.00048 0.00160

50 N-be75oi 111171 0.00219 0.00409 0.01087 44 N-t70n11xx 52704 0.00394 0.00424 0.01541

50 N-be75tot 980516 0.00165 0.00421 0.01650 44 N-t70u11xx 21716400 0.00193 0.00169 0.02038

60 N-stabu70 362512 0.00796 0.01357 0.03051 44 N-t70w11xx 224319954 0.00409 0.00526 0.02003

60 N-stabu74 541393 0.00624 0.01080 0.02236 44 N-t70x11xx 283808865 0.00254 0.00277 0.01901

60 N-stabu75 553303 0.00662 0.01252 0.02628 44 N-t74d11xx 566089 0.00133 0.00113 0.02311

44 N-t59b11xx 209320 0.00454 0.00155 0.00933 44 N-t75d11xx 578304 0.00205 0.00323 0.02281

44 N-t59d11xx 147354 0.00482 0.01823 0.01086 44 N-t75e11xx 2739219 0.00253 0.00319 0.00660

44 N-t59f11xx 122520 0.00032 0.00214 0.00861 44 N-t75i11xx 63567735 0.00080 0.00163 0.01315

44 N-t59i11xx 8261545 0.00020 0.00208 0.00218 44 N-t75k11xx 108844 0.00104 0.00189 0.01041

44 N-t59n11xx 20928 0.00287 0.00583 0.01121 44 N-t75n11xx 93777 0.00520 0.00543 0.02078

44 N-t65b11xx 356758 0.00569 0.00481 0.02661 44 N-t75u11xx 52708323 0.00126 0.00128 0.01482

44 N-t65d11xx 237739 0.00764 0.00407 0.02230 56 N-tiw56n54 91554 0.00372 0.00301 0.01713

44 N-t65f11xx 217295 0.00515 0.00568 0.01042 56 N-tiw56n58 125224 0.00337 0.00350 0.01382

44 N-t65i11xx 14469163 0.00106 0.00156 0.01108 56 N-tiw56n62 176715 0.00354 0.00707 0.02364

44 N-t65l11xx 16719 0.00153 0.00287 0.00182 56 N-tiw56n66 226547 0.00398 0.01227 0.02872

44 N-t65n11xx 32157 0.00236 0.00516 0.02152 56 N-tiw56n67 226033 0.00299 0.00813 0.02523

44 N-t65w11xx 138181029 0.00369 0.00591 0.01466 56 N-tiw56n72 365146 0.00332 0.02243 0.02460

44 N-t69r11xx 771149 0.00454 0.00433 0.00681 56 N-tiw56r54 102948 0.00270 0.00650 0.01928

44 N-t70b11xx 528419 0.00220 0.00222 0.01759 56 N-tiw56r58 129568 0.00383 0.00548 0.01849

44 N-t70d11xx 376725 0.00250 0.00594 0.02644 56 N-tiw56r66 209491 0.00468 0.01239 0.02038

44 N-t70d11xxb 366469 0.00205 0.00263 0.02301 56 N-tiw56r67 222810 0.00267 0.00633 0.01793

44 N-t70f11xx 360336 0.00512 0.00631 0.01286 56 N-tiw56r72 270663 0.00401 0.01108 0.02812

44 N-t70i11xx 24785782 0.00069 0.00208 0.00743 79 N-usa79 1813986 0.01182 0.01303 0.02439

In addition to the MRD values, for each algorithm the computational time needed to perform

the 1000𝑛2 evaluations was collected. Results are depicted in Fig. 3 in the form of a line plot (note

𝑦-axis is in log-scale). As can be observed, GS (in red) is the fastest algorithm among the compared

ones, being the second-fastest NES and, finally, EDA. It is worth noting that NES and EDA involve

at each iteration very time-consuming processes that increase the computational time in each case,

i.e., NES inverts a matrix that it is 𝑂 (𝑛3), and EDA uses Minorization-Maximization algorithm for

estimating the parameters of the model which is a very intensive iterative procedure. Contrarily,

GS employs a simpler process that does not require computationally heavy operations. Overall, GS

seems to be the best algorithm, balancing the performance and computational cost.

5.4 Convergence analysis
Trying to understand the performance results observed in the previous section, we performed a

convergence analysis of five indicators that can be beneficial regarding such behaviors: entropy,

the best objective value, sample size 𝜆, learning rate 𝜂 and number of restarts (that, we recall, are

only performed when numerical errors occur). To that end, 10 repetitions of the algorithms were

executed on the 𝑁 −𝑏𝑒75𝑒𝑒𝑐 instance of the IO and xLOLIB benchmarks (with sizes 𝑛 = 50 , 𝑛 = 150

and 𝑛 = 250), and the average value of the indicators across the iterations are depicted in Fig. 4.

As stated in the introduction, one of the contributions in this paper is the parameter-free nature

of the proposed algorithm. Specifically, in the previous section, we elaborated on the theoretical

reasoning of the automated calculation of 𝜆 and 𝜂 parameters. For that reason, we include in the

analysis the parameter-free versions of the GS and NES, denoted as GS
∗
and NES

∗
, respectively.

From the figure, we can note some observations as follows.
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Fig. 4. Convergence plots on instances 𝑁 −𝑏𝑒75𝑒𝑒𝑐 , 𝑁 −𝑏𝑒75𝑒𝑒𝑐_150 and 𝑁 −𝑏𝑒75𝑒𝑒𝑐_250. Average measures
over 10 repetitions of GS, GS∗, NES and NES∗ algorithms of the entropy, the best objective value, sample size
𝜆, learning rate 𝜂 and number of restarts.

• GS algorithms converge faster than NES algorithms in terms of best 𝑓 values. Moreover, GS
∗

quickly reaches good objective values than its non-adaptive counterpart GS, especially with

instances of large size (𝑛 = 150 and 𝑛 = 250).

• The behavior of the number of restarts shows that NES algorithms produces great amount

of numerical errors, which suggests that NES is not suited to run under the Plackett-Luce

model. This is especially significant on 𝑛 = 150 and 𝑛 = 250.
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• The entropy plot agrees with respect to the behavior of the number of restarts. When the

entropy decreases, the PL distribution gets concentrated on the mode permutation, thus its

probability increases. Moreover, when 𝑛 = 150 and 𝑛 = 250, the entropy plot starts to oscillate

as an effect of the restarts performed.

• In the case of GS
∗
and NES∗, the "oscillation after restarts" phenomenon is observable also

for behavior plots of the learning rate 𝜂 and the sample size 𝜆. It is interesting to analyze the

left part of these plots (before oscillations starts to be observed). In particular, these parts of

the plots seem to coincide with the time required by the best objective value to converge.

Interestingly, they clearly show that constant values for 𝜂 and 𝜆 (as is the case for GS and

NES) are far to be the desirable settings in the different stages of the optimization.

5.5 Evaluation of the parameter-free scheme
In order to evaluate the effectiveness of the parameter-free scheme, and in view of the results of

NES in previous sections, we have exclusively focused on the GS approach, which resulted in the

most successful option. The experimentation in Section 5.3 has been reproduced, including the GS
∗

algorithm for the IO and xLOLIB benchmarks.

In order to statistically assess the results obtained, we have followed the Bayesian approach

presented in [Benavoli et al. 2017], as it provides a deeper insight into the results than the classical

null hypothesis significance tests. In particular, as we cannot assume that the experimental results

come from a Gaussian distribution, we have used the Bayesian equivalent of the Wilcoxon’s test
11
.

The Bayesian analysis was conducted on the average value obtained by each algorithm, GS and

GS
∗
, in the 20 repetitions. The procedure used requires the definition of what is understood as

"practical equivalence" or "rope" in [Benavoli et al. 2017]. In our case, we have considered that both

approaches are equivalent when the difference in MRD is smaller than 10
−4
. Results are illustrated

in Fig. 5 as Bayesian Signed Rank test plots (exact numeric results are presented in Appendix A,

Table 3). Briefly, the points in the plot represent a sampling of the posterior distribution of the

Fig. 5. Bayesian signed rank test plots comparing GS with the respect to the parameter-free version, GS∗,
on IO and xLOLIB benchmarks. Together with each of the plots, the posterior probability of each algorithm
being the best is depicted.

probability of win-lose-tie modeled by the Bayesian model. In other words, the closer a point is to

the GS vertex of the triangle (or, equivalently, to the GS
∗
or the Rope vertices), the more probable it

is for GS to produce better results (or equivalently, GS
∗
or both algorithms being equal). Therefore,

the three areas delimited by the dashed lines show the dominance regions, i.e., the area where the

highest probability corresponds to its vertex.

11
We have used the implementation available in the development version of the scmamp R package [Calvo and Santafe

2016] available at https://github.com/b0rxa/scmamp.
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The plots show that the parameter-free version of the algorithm GS
∗
outperforms the standard

version, GS, for the three benchmarks. The expected probabilities of winning the GS
∗
in each of

the benchmark are 0.953, 1 and 0.547, respectively.

6 CONCLUSION & FUTUREWORK
Using probability distributions has been a common practice to implement stochastic optimization

algorithms, however, a great number of works in the literature have shown that using them

frequently implies significant computational overheads. In this paper, we propose using the model-

based gradient search framework to iteratively adapt the parameters of a probability distribution

to optimize permutation-coded problems. We investigated its performance when using plain and

natural gradients. Not limited to that, a parameter-free version of the algorithm has been presented.

Conducted experiments demonstrated that the gradient search algorithm, under the plain gradient,

performs better than natural gradient and also an analogous EDA (using the same probability

distribution) in terms of execution results. Numerical experiments also point out that the advantage

of GS is not limited to better results, but it is much faster.

Results definitively validate the present research line and encourage future results. In that

sense, a possible research line to explore has to do with the probability model implemented in

the framework. In this case, we proposed using the multi-stage model called Plackett-Luce model.

However, it has been extensively acknowledged, especially in the research on EDAs, that there is

no model that is the best for any optimization problem. In fact, previous works have shown that

choosing the right model for each problem is the best way to approach it. In that sense, in the

context of permutation-coded problems, we identify the Babington-Smith model, and its special

cases, Bradley-Terry [Bradley and Terry 1952], Mallows-𝜙 and Mallows-𝜃 [Mallows 1957] models,

as alternatives for future research [Marden 1996].

From the possible models, distance-based exponential models such as Mallows and Generalized

Mallows cannot be directly applied, as it is one of the assumptions of the current work that the

parameters that are adjusted via gradient search need to be continuous. In fact, Mallows and its

generalization have a parameter that is the mode permutation 𝜎0 of the distribution. However, a

possible research line could develop mixed learning strategies where 𝜎0 is estimated as usual, but

the spread parameters are estimated via gradient search. This strategy would actually replace the

numerical methods that are usually used for the estimation of the spread parameters. Another

interesting alternative is to relax the mode permutation to a doubly stochastic matrix and modify

accordingly both the distance and probability mass function. Such a line of research could allow

the presented framework to be extended to distance-based models on the domain of permutations.
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A ADDITIONAL PERFORMANCE RESULTS

Table 2. Results of the GS (𝜆 = 100, 𝜂 = 0.05 and 𝜆 = 1000, 𝜂 = 0.1), EDA and NES (𝜆 = 10, 𝜂 = 0.5) for the LOP
instances in the xLOLIB benchmark (𝑛 = 150 and 𝑛 = 250). The Median Relative Deviations (MRD) measures
of the values found across the 20 repetitions of the best known results are reported. Results in bold highlight
the algorithm that obtained the lowest MRD. A maximum number of 1000𝑛2 evaluations were performed by
each of the algorithms.

Instance

𝑛 = 150 𝑛 = 250

Best Known GS EDA NES Best Known GS EDA NES

N-be75eec 3479547 0.03297 0.04101 0.11908 8863792 0.03884 0.04045 0.14260

N-be75np 7162017 0.03554 0.04119 0.12771 17787439 0.04158 0.04130 0.14643

N-be75oi 2243536 0.02343 0.02978 0.07808 5902311 0.03662 0.04415 0.11717

N-be75tot 12270431 0.04631 0.04928 0.12934 30877286 0.03658 0.03934 0.14646

N-stabu1 2870590 0.03536 0.03592 0.11272 7729985 0.03711 0.03677 0.14144

N-stabu2 4326193 0.03277 0.03355 0.11358 11468284 0.03798 0.03737 0.14305

N-stabu3 4507290 0.03200 0.03276 0.10602 11869084 0.04113 0.04104 0.13982

N-t59b11xx 3238100 0.03653 0.04434 0.13836 8384455 0.04300 0.04528 0.15789

N-t59d11xx 1461623 0.03529 0.03624 0.12420 3831921 0.04059 0.04098 0.13491

N-t59f11xx 1539948 0.03762 0.04028 0.12493 3978521 0.04347 0.04027 0.15033

N-t59n11xx 318453 0.03802 0.04262 0.11830 822422 0.04536 0.04645 0.15330

N-t65b11xx 6433186 0.03389 0.03911 0.12060 17238947 0.04365 0.04423 0.14754

N-t65d11xx 3556730 0.04029 0.04104 0.12665 9320283 0.03986 0.04129 0.15145

N-t65f11xx 3152817 0.03927 0.03731 0.12707 8391707 0.04075 0.04142 0.15310

N-t65l11xx 253206 0.02610 0.03273 0.10061 665843 0.03594 0.04183 0.13853

N-t65n11xx 550079 0.03532 0.03770 0.13775 1426219 0.04022 0.04338 0.15693

N-t69r11xx 11843437 0.04289 0.04995 0.13272 31675692 0.04018 0.04141 0.15451

N-t70b11xx 9628132 0.03667 0.04196 0.13085 25356014 0.04629 0.04544 0.15998

N-t70d11xn 5816430 0.03824 0.04356 0.13446 15166124 0.04153 0.04004 0.14184

N-t70d11xx 6151361 0.04235 0.04435 0.13244 15988331 0.03910 0.04167 0.14434

N-t70f11xx 5138418 0.04156 0.04291 0.13178 13541532 0.04368 0.04322 0.14979

N-t70l11xx 436862 0.04344 0.04964 0.12764 1108964 0.04397 0.04711 0.16259

N-t70n11xx 948326 0.04440 0.04391 0.13763 2438817 0.04296 0.04374 0.16176

N-t74d11xx 9365784 0.03727 0.03897 0.11845 24359820 0.04197 0.03850 0.14519

N-t75d11xx 9621376 0.03808 0.04088 0.12915 24987677 0.03957 0.03916 0.14274

N-t75e11xx 41567726 0.03573 0.03794 0.12977 106474931 0.04122 0.04438 0.15484

N-t75k11xx 1539206 0.03282 0.03605 0.12682 4080733 0.04216 0.04112 0.15228

N-t75n11xx 1740380 0.03989 0.04587 0.13269 4515161 0.04513 0.04406 0.15650

N-tiw56n54 835995 0.03424 0.03962 0.11599 2092186 0.03889 0.03996 0.14202

N-tiw56n58 1152698 0.03773 0.04313 0.12165 2896743 0.04154 0.04035 0.14069

N-tiw56n62 1625001 0.03818 0.04313 0.13155 4129750 0.03772 0.03832 0.14354

N-tiw56n66 2103450 0.03731 0.04499 0.13102 5351638 0.03663 0.03716 0.14720

N-tiw56n67 2368279 0.03767 0.04161 0.11486 6304037 0.03502 0.03972 0.12983

N-tiw56n72 4132640 0.03838 0.04350 0.12039 11138394 0.03688 0.04022 0.12923

N-tiw56r54 956715 0.03409 0.04015 0.12106 2382752 0.04151 0.04267 0.14912

N-tiw56r58 1217611 0.03816 0.04367 0.12777 3052235 0.04271 0.04166 0.14351

N-tiw56r66 1935339 0.03831 0.04490 0.13295 4931979 0.03681 0.03784 0.14276

N-tiw56r67 2054112 0.03472 0.03770 0.12334 5278228 0.03921 0.04304 0.14116

N-tiw56r72 2821100 0.04127 0.04457 0.12878 7439243 0.04082 0.04136 0.14290

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Model-based Gradient Search for Permutation Problems 111:25

Table 3. Results of the GS* and NES* on the IO and xLOLIB benchmarks (𝑛 = 150 and 𝑛 = 250). The Median
Relative Deviations (MRD) measures of the values found across the 20 repetitions of the best known results
are reported. Results in bold highlight the algorithm that obtained the lowest MRD. A maximum number of
1000𝑛2 evaluations were performed by each of the algorithms.

IO xLOLIB 𝑛 = 150 xLOLIB 𝑛 = 250

Instance Best Known GS* NES* Instance Best Known GS* NES* Best Known GS* NES*

N-be75eec 236464 0.00960 0.02254 N-be75eec 3479547 0.03211 0.16165 8863792 0.03920 0.15654

N-be75np 716994 0.00172 0.01611 N-be75np 7162017 0.03583 0.14783 17787439 0.04144 0.14827

N-be75oi 111171 0.00258 0.01561 N-be75oi 2243536 0.02200 0.11577 5902311 0.03459 0.13337

N-be75tot 980516 0.00172 0.03033 N-be75tot 12270431 0.04624 0.15649 30877286 0.03639 0.15638

N-stabu70 362512 0.00799 0.04491 N-stabu1 2870590 0.03397 0.14730 7729985 0.03709 0.14044

N-stabu74 541393 0.00647 0.04180 N-stabu2 4326193 0.03269 0.14234 11468284 0.03765 0.14622

N-stabu75 553303 0.00661 0.04640 N-stabu3 4507290 0.03123 0.14431 11869084 0.03887 0.15151

N-t59b11xx 209320 0.00473 0.03104 N-t59b11xx 3238100 0.03781 0.15944 8384455 0.04393 0.14929

N-t59d11xx 147354 0.00478 0.02693 N-t59d11xx 1461623 0.03527 0.15214 3831921 0.04079 0.13150

N-t59f11xx 122520 0.00040 0.02166 N-t59f11xx 1539948 0.03818 0.15441 3978521 0.04366 0.14849

N-t59i11xx 8261545 0.00021 0.01179 N-t59n11xx 318453 0.03824 0.16913 822422 0.04498 0.15188

N-t59n11xx 20928 0.00272 0.02203 N-t65b11xx 6433186 0.03325 0.14328 17238947 0.04483 0.14575

N-t65b11xx 356758 0.00558 0.04572 N-t65d11xx 3556730 0.03968 0.15510 9320283 0.04025 0.13463

N-t65d11xx 237739 0.00298 0.03415 N-t65f11xx 3152817 0.03875 0.14885 8391707 0.04115 0.14738

N-t65f11xx 217295 0.00501 0.03416 N-t65l11xx 253206 0.02485 0.14124 665843 0.03539 0.16224

N-t65i11xx 14469163 0.00110 0.02811 N-t65n11xx 550079 0.03354 0.16728 1426219 0.04205 0.15699

N-t65l11xx 16719 0.00144 0.00446 N-t69r11xx 11843437 0.04209 0.16165 31675692 0.04023 0.15958

N-t65n11xx 32157 0.00239 0.02942 N-t70b11xx 9628132 0.03623 0.15653 25356014 0.04457 0.15881

N-t65w11xx 138181029 0.00361 0.03591 N-t70d11xn 5816430 0.03879 0.14099 15166124 0.04142 0.14473

N-t69r11xx 771149 0.00444 0.02477 N-t70d11xx 6151361 0.04069 0.15274 15988331 0.04073 0.13965

N-t70b11xx 528419 0.00240 0.03927 N-t70f11xx 5138418 0.04072 0.14993 13541532 0.04473 0.14632

N-t70d11xx 376725 0.00280 0.04485 N-t70l11xx 436862 0.03884 0.17811 1108964 0.04439 0.16421

N-t70d11xxb 366469 0.00215 0.02810 N-t70n11xx 948326 0.04364 0.15908 2438817 0.04372 0.15651

N-t70f11xx 360336 0.00535 0.03612 N-t74d11xx 9365784 0.03674 0.14954 24359820 0.04128 0.14178

N-t70i11xx 24785782 0.00129 0.02055 N-t75d11xx 9621376 0.03782 0.14662 24987677 0.03984 0.13812

N-t70k11xx 60659200 0.00112 0.03134 N-t75e11xx 41567726 0.03396 0.16251 106474931 0.04256 0.15947

N-t70l11xx 25253 0.00000 0.00879 N-t75k11xx 1539206 0.03208 0.16138 4080733 0.04189 0.14251

N-t70n11xx 52704 0.00370 0.02849 N-t75n11xx 1740380 0.04012 0.16915 4515161 0.04342 0.14698

N-t70u11xx 21716400 0.00190 0.02306 N-tiw56n54 835995 0.03435 0.14514 2092186 0.03981 0.14304

N-t70w11xx 224319954 0.00295 0.04287 N-tiw56n58 1152698 0.03742 0.15056 2896743 0.04103 0.14407

N-t70x11xx 283808865 0.00237 0.03660 N-tiw56n62 1625001 0.03649 0.14909 4129750 0.03819 0.14226

N-t74d11xx 566089 0.00095 0.02897 N-tiw56n66 2103450 0.03663 0.14873 5351638 0.03702 0.13913

N-t75d11xx 578304 0.00199 0.03957 N-tiw56n67 2368279 0.03615 0.14365 6304037 0.03565 0.13262

N-t75e11xx 2739219 0.00298 0.03140 N-tiw56n72 4132640 0.03852 0.15013 11138394 0.03593 0.13715

N-t75i11xx 63567735 0.00074 0.03571 N-tiw56r54 956715 0.03305 0.14896 2382752 0.04028 0.14412

N-t75k11xx 108844 0.00106 0.02880 N-tiw56r58 1217611 0.03813 0.13904 3052235 0.04104 0.14198

N-t75n11xx 93777 0.00522 0.03148 N-tiw56r66 1935339 0.03770 154.00000 4931979 0.03764 0.14188

N-t75u11xx 52708323 0.00126 0.04119 N-tiw56r67 2054112 0.03342 0.14528 5278228 0.03711 0.14274

N-tiw56n54 91554 0.00386 0.04312 N-tiw56r72 2821100 0.04002 0.14301 7439243 0.03845 0.14460

N-tiw56n58 125224 0.00375 0.04258

N-tiw56n62 176715 0.00344 0.05117

N-tiw56n66 226547 0.00420 0.05163

N-tiw56n67 226033 0.00312 0.05374

N-tiw56n72 365146 0.00372 0.05039

N-tiw56r54 102948 0.00283 0.05074

N-tiw56r58 129568 0.00446 0.04963

N-tiw56r66 209491 0.00505 0.04635

N-tiw56r67 222810 0.00281 0.04304

N-tiw56r72 270663 0.00385 0.04992

N-usa79 1813986 0.01354 0.05622
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