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ABSTRACT
Gradient search is a classical technique for optimizing differentiable

functions that has gained much relevance recently due to its ap-

plication on Neural Network training. Despite its popularity, the

application of gradient search has been limited to the continuous

optimization and its usage in the combinatorial case is confined to

a few works, all which tackle the binary search space. In this paper,

we present a new approach for applying Gradient Search to the

space of permutations. The idea consists of optimizing the expected

objective value of a random variable defined over permutations.

Such a random variable is distributed according to the Plackett-

Luce model, and a gradient search over its continuous parameters

is performed. Conducted experiments on a benchmark of the linear

ordering problem confirm that the Gradient Search performs bet-

ter than its counterpart Estimation of Distribution Algorithm: the

Plackett-Luce EDA. Moreover, results reveal that the scalability of

the Gradient Search is better than that of the PL-EDA.
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1 INTRODUCTION
Mathematical gradient-based optimization algorithms, hereinafter

referred to as Gradient Search (GS) techniques, are classical tech-

nique for optimizing problems defined on the continuous domain.

Recently, GS approaches gained popularity in the machine learning

field where they are adopted for Neural Network training [11, 28].

Nevertheless, in the combinatorial domain, the application of GS

has been limited to a few works. Clearly, the main reason is that,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

in a discrete space, there does not exist a well-defined notion of

gradient.

Nevertheless, there have been proposals [5, 25, 34] to apply a

model-based approach that can enable the use of GS in the combi-

natorial case. The main idea consists of: (i) optimizing the expected

objective value of a random variable defined over the discrete space,

and (ii) defining the model underlying the random variable in terms

of continuous parameters. In this way, a gradient can be defined

and computed over the parameters of the model.

Though this approach can be generally applied to practically any

discrete search space, only applications to binary problems have

been observed in the literature [4, 22, 25]. Other discrete search

space such as, for instance, the space of permutations, have been

mostly ignored so far in the research.

In this paper, we propose using Gradient Search for optimizing

problems defined in the space of permutations. These problems,

usually called permutation-based combinatorial problems, are op-

timization problems whose solutions are naturally described by

permutations of 𝑛 items [8].

To that end, among the broad range of probability modes de-

fined on the symmetric group (space of permutations), due to its

simplicity and interpretability, we focused on the Plackett-Luce

model [20, 26]. Taking this model as a basis, we devised a Gradient

Search scheme – namely, Plackett-Luce-GS (PL-GS) – which can be

applied to any permutation problem.

For the sake of validating the idea proposed in this manuscript,

a set of experiments was conducted on a benchmark of instances

of the Linear Ordering Problem (LOP) where comparisons with the

Plackett-Luce Estimation of Distribution Algorithm (PL-EDA) [9]

were carried out. It is worth noting that in both approaches, PL-GS

and PL-EDA, the solutions of the LOP, codified as permutations, are

sampled from a previously adjusted Placket-Luce model. So far the

similarities, in PL-EDA the maximum likelihood estimators of the

parameters, are estimated, and the model is employed in the context

of an EDA. However, in the newly proposed PL-GS, the weights

are adjusted by means of a gradient ascent process that aims at

maximizing the expected objective value over the sample space

of the PL model. Hence, the optimization of the given objective

function happens as a side effect of the previously described process.
The experimental results revealed that, appropriately calibrated,

PL-GS clearly outperforms PL-EDA in terms of quality measures,

and also execution time.

The remainder of the paper is organized as follows. In the next

section, an introductory background of gradient search for combina-

torial optimization is provided. Afterwards, in Section 3, a revision

of probability distributions defined on the space of permutations S𝑛
is introduced. The contribution of this paper, the Gradient Search
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for permutation problems, is presented in Section 4. Then, an ex-

perimental study that proves the validity of the proposed idea is

conducted in Section 5. Finally, conclusions and future lines of

research are discussed in Section 6.

2 GRADIENT SEARCH FOR
COMBINATORIAL OPTIMIZATION

Gradient Search (GS) techniques are nowadays ubiquitous in the

field of machine learning [11, 28], where they are usually adopted

in order to optimize the loss function of a given probabilistic model

on a given dataset of samples. Actually, the loss function is a differ-

entiable function which maps a set of continuous variables – the

parameters of the model – onto a real number which intuitively

indicates the cost of the parameterized model. Therefore, GS tech-

niques exploit the gradient of a differentiable objective function in

order to iteratively adjust the parameters by moving them towards

the direction of steepest ascent (descent) of the objective function

to maximize (minimize).

Formally, let 𝑓 : R𝑛 → R be a differentiable objective function

to maximize, then the most basic GS technique – gradient ascent –

iteratively updates the incumbent solution 𝑥𝑡 ∈ R𝑛 according to

𝑥𝑡+1 ← 𝑥𝑡 + 𝜂∇𝑓 (𝑥𝑡 ), (1)

where ∇𝑓 (𝑥𝑡 ) ∈ R𝑛 is the gradient of 𝑓 at point 𝑥𝑡 , while 𝜂 > 0 is

the learning rate parameter of GS.

Though the GS approach is very natural and effective for a differ-

entiable function, it is not apparent how to use it in combinatorial

optimization. Very first attempts of using GS for optimizing discrete

objective function have been proposed in [4–6, 34]. The key concept

is to use GS in order to optimize the expected objective value of a

random variable whose probability model, over the discrete space

of solutions, is represented by continuous parameters. This idea has

been later reused, systematized and extended in [22], [32] and [25].

Note anyway that, in all these works, only discrete problems over

bit-strings have been considered. The only work which considers

GS techniques over a discrete space different from the binary one

is the very recent [1], which addresses the problem of learning the

structure of a Bayesian network given a dataset of observations. It is

worth noting that [1] is contemporary to our work here presented.

In order to be self-contained, we formally provide the main

scheme of GS when applied to a combinatorial problem defined over

a general discrete solutions space 𝑋 and whose objective function

to maximize is 𝑓 : 𝑋 → R.
Let us choose a probability model over𝑋 , represented by a vector

𝜃 ∈ R𝑚 , and such that its probability mass function 𝑝𝜃 is differen-

tiable with respect to 𝜃 .1

Therefore, the objective function to be maximized by GS is

𝐹 (𝜃 ) = 𝐸𝜃 [𝑓 (𝑥)] =
∑
𝑥 ∈𝑋

𝑓 (𝑥)𝑝𝜃 (𝑥), (2)

1
Clearly, since it is a probability mass function, we have that

∑
𝑥∈𝑋 𝑝𝜃 (𝑥) = 1 and

𝑝𝜃 (𝑥) ≥ 0 for all 𝑥 ∈ 𝑋 .

whose gradient, with respect to 𝜃 , can be written as

∇𝜃 𝐹 (𝜃 ) = ∇𝜃
∑
𝑥 ∈𝑋 𝑓 (𝑥)𝑝𝜃 (𝑥)

=
∑
𝑥 ∈𝑋 𝑓 (𝑥)∇𝜃𝑝𝜃 (𝑥)

=
∑
𝑥 ∈𝑋 𝑓 (𝑥)∇𝜃𝑝𝜃 (𝑥)

𝑝𝜃 (𝑥)
𝑝𝜃 (𝑥)

=
∑
𝑥 ∈𝑋 𝑓 (𝑥) [∇𝜃 log𝑝𝜃 (𝑥)] 𝑝𝜃 (𝑥)

= 𝐸𝜃 [𝑓 (𝑥)∇𝜃 log𝑝𝜃 (𝑥)] ,

(3)

where the fourth line is due to the so-called "log derivative trick".

Since 𝑋 has usually a prohibitive size, we resort to computing an

estimate of the search gradient based on 𝜆 samples 𝑥1, . . . , 𝑥𝜆 ∈ 𝑋
drawn from the probability model represented by 𝜃 , i.e.,

∇𝜃 𝐹 (𝜃 ) ≈
1

𝜆

𝜆∑
𝑖=1

𝑓 (𝑥𝑖 )∇𝜃 log 𝑝𝜃 (𝑥𝑖 ) . (4)

Therefore, the GS scheme of formula (1) can now be used to iter-

atively update 𝜃 by summing to it the quantity 𝜂∇𝜃 𝐹 (𝜃 ). As proved
in [4], the optimization of 𝑓 (𝑥) is obtained, in some sense, as a side

effect of the optimization of 𝐹 (𝜃 ). In fact, 𝐹 (𝜃 ) is optimized when

the probability mass 𝑝𝜃 is totally concentrated on the optimum

solution of 𝑓 (𝑥).
For the sake of clarity, we provide the pseudo-code of GS for

combinatorial optimization in Algorithm 1.

Algorithm 1 Gradient Search for Combinatorial Optimization

1: function GS(𝑓 : 𝑋 → R, 𝜂 ∈ R+, 𝜆 ∈ N+)
2: initialize 𝜃0 in such a way that probabilities are uniformly

distributed

3: 𝑥∗ maintains the best solution so far

4: 𝑡 ← 0

5: while stopping criterion is not met do
6: for 𝑖 ← 1 to 𝜆 do
7: sample 𝑥𝑖 from 𝜃𝑡
8: evaluate 𝑓 (𝑥𝑖 ) and update 𝑥∗ if improvement found

9: calculate ∇𝜃𝑡 log𝑝𝜃𝑡 (𝑥𝑖 )
10: end for
11: calculate ∇𝜃𝑡 𝐹 (𝜃𝑡 ) according to equation (4)

12: 𝜃𝑡+1 ← 𝜃𝑡 + 𝜂∇𝐹 (𝜃𝑡 )
13: 𝑡 ← 𝑡 + 1
14: end while
15: return 𝑥∗

16: end function

Hence, an implementation for a concrete discrete space requires

a sampling method (line 7) and a procedure to compute the deriva-

tives of the log-probability (line 9).

3 PROBABILITY DISTRIBUTIONS ON S𝑛
Modelling ranking data by means of probability distributions has

been a hot research topic for decades in the appliedmathematics and

statistics field. In fact, a large number of papers have been published

on the topic of probability distributions on the symmetric group S𝑛 .
In the following, a quick summary of the most relevant probability

distributions for permutation spaces will be provided. It is not the

aim of this section, to provide a comprehensive review of such

models, so we refer the interested reader to the work by Critchlow

et al. [10, 13] and the tutorial work by Lozano and Irurozki [19].
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Before starting, mathematically a permutation is a bijection func-

tion𝜎 of the set {1, . . . , 𝑛} onto itself.𝜎 (𝑖) (also denoted as𝜎𝑖 ) stands
for the element at position 𝑖 , and 𝜎−1 (𝑖) represents the position of

element 𝑖 . The group of all permutations of size 𝑛, is denoted as S𝑛 ,
and is also known as the symmetric group.

According to Fligner et al. [14], the probability distributions

for permutations are usually grouped into two main families: (1)

the models that assign probabilities using a distance metric on

permutations, known as distance-based ranking models, and those

that use the item-effect approach, known as order statistic models.
Among the first family of models, in [23] a distance-based ex-

ponential ranking model, known as the Mallows model was intro-

duced. Analogous to the Gaussian distribution over the continu-

ous domain, the Mallows model is defined by two parameters, the

central permutation 𝜎0 and the concentration parameter 𝜃 , and

describes the variability of the permutations around the true per-

mutation 𝜎0. The probability of every permutation in S𝑛 decays

exponentially with its distance, 𝐷 (𝜎, 𝜎0) to 𝜎0

𝑃 (𝜎) = exp(−𝜃𝐷 (𝜎, 𝜎0))
𝜓 (𝜃 ) (5)

where𝜓 is a normalization function that depends on the concen-

tration parameter 𝜃 . Despite the initial papers on the Mallows

model investigated distance metrics that count the number of dis-

cordant pairs among the permutations [15], recent works have

extended the applicability of this model using four different metrics

for permutations-coded solutions [12, 17].

As a generalization of the Mallows model, Fligner et al. [14]

proposed a multi-stage probability model that requires the distance

to be decomposed into 𝑛 − 1 terms. Then, the Generalized Mallows

model makes use of 𝑛 − 1 concentration parameters, the vector

𝜽 , each of them affecting a particular component of the distance

decomposition. The probability of any 𝜎 ∈ S𝑛 is calculated as

𝑃 (𝜎) =
exp(−∑𝑛−1

𝑗=1 𝜃 𝑗𝑆 𝑗 (𝜎, 𝜎0))
𝜓 (𝜽 ) (6)

where 𝑆 𝑗 denotes the 𝑗th term of the decomposed distance. Ac-

cording to the work by Irurozki [17], most, although not all, of the

distance-metrics on permutations, i.e., Kendall’s-𝜏 , Cayley, Ham-

ming, can be decomposed as the sum of 𝑛 − 1 terms, and can be

efficiently learnt and sampled.

Regarding the second group of models, order statistic models,
there are numerous references such as Thurstone [30],Mosteller [24]

and Babington-Smith[18]. However, one of the most well-known

probability models in this group is the Plackett-Luce model (a Thur-

stone type model), and its special case, by paired comparisons, the

Bradley-Terry model [27]. In this paper, the Plackett-Luce model is

fundamental for the Gradient Search approach we propose, and so,

in the following paragraphs, we provide extensive details on it.

Given a vector w = (𝑤1, . . . ,𝑤𝑛) of positive weights, under the
Bradley-Terry model, the probability of item 𝑖 beating item 𝑗 is

calculated as

𝑃 (𝑖 ≺ 𝑗) = 𝑤𝑖

𝑤𝑖 +𝑤 𝑗

where𝑤𝑖 and𝑤 𝑗 denote the weights associated to the items 𝑖 and

𝑗 . The idea of "beating" is translated to the permutation as the

preference for 𝜎 (𝑖) < 𝜎 ( 𝑗), i.e., better rank.

Therefore, the probability of any permutation 𝜎 ∈ S𝑛 (up to

a normalization constant) is obtained by extending the previous

expression to all pairwise comparisons as

𝑃𝐵𝑇 (𝜎 |𝒘) ∝
𝑛−1∏
𝑖=1

𝑛∏
𝑗=𝑖+1

𝑤𝜎 (𝑖)
𝑤𝜎 (𝑖) +𝑤𝜎 ( 𝑗)

. (7)

The Plackett-Luce model [20, 26] extends the comparison that

the Bradley-Terry model makes to any number of items. For each

item 𝑖 ∈ 𝐵, where 𝐵 ranges over all the possible subsets of items

{1, . . . , 𝑛}, 𝑃𝐵 (𝑖) is the probability that item 𝑖 is chosen as the most

preferred item among those listed in 𝐵. Formally,

𝑃𝐵 (𝑖) =
𝑤𝑖∑
𝑗 ∈𝐵 𝑤 𝑗

Then, for every permutation 𝜎 and a parameter vector w, the prob-

ability under the Plackett-Luce model is calculated as

𝑃 (𝜎 |𝒘) =
𝑛−1∏
𝑖=1

𝑤𝜎 (𝑖)∑𝑛
𝑗=𝑖 𝑤𝜎 ( 𝑗)

(8)

Thus, the higher𝑤𝑖 is, the more likely 𝑖 is to appear in the top rank.

By intuition, the vector w can be normalized to sum 1, so that𝑤𝑖

becomes the probability that item 𝑖 is most preferred among the

full set of items.

The Plackett-Luce model can be explained under numerous il-

lustrative examples, and one is that proposed by Diaconis in the

foreground of [13]. Let us consider we have 𝑛 folders that are used

with different frequencies. We want to arrange them so the most

popular folder is on top, the next most popular folder next, and so

on. If we do not know the popularity of the folders, it is natural to

rearrange them by leaving the last used folder on top each time. If

the frequency of use of folder 𝑖 is𝑤𝑖 , this gives a Markov chain on

the symmetric group whose stationary probability is given by the

Plackett-Luce model.

4 GRADIENT SEARCH IN THE SPACE OF
PERMUTATIONS

We propose an implementation, for the search space of permuta-

tions S𝑛 , of the discrete GS scheme presented in Section 2.

First of all, we choose the Plackett-Luce (PL) model (see Section

3) because, compared to the other models, PL has the following

advantages: (i) the parameters are continuous, (ii) the probability

mass function (and its logarithm) is differentiable, and (iii) the

sampling procedure can be easily implemented in an unbiased way.

Note that models such as those based on distances (see Eqs. 5 and 6)

do not comply with these restrictions and, thus, cannot be used

in the framework proposed in this work. In the following, we will

refer to our discrete GS variant for permutations as PL-GS.

Let us note that the PL weights𝑤 ∈ R𝑛 must be positive for equa-

tion (8) and the sampling procedure to be well defined. Moreover,

let us also consider that, according to Section 2, we are planning

to iteratively update𝑤 by summing to it a (scaled) gradient vector

but, since the partial derivatives in the gradient are free to assume

any value in R, we cannot guarantee the feasibility of 𝑤 after an

update, i.e., one or more weights may become negative.

We address this issue by means of the exp function which has the

property of being a strictly monotonic transformation that maps a
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generic real number onto a positive real number. Therefore, PL is

reparametrized by the unconstrained vector 𝑤̃ ∈ R𝑛 in such a way

that, given any permutation 𝜎 ∈ S𝑛 , its probability to be sampled is

𝑃 (𝜎 |𝒘̃) =
𝑛−1∏
𝑖=1

exp

(
𝑤̃𝜎 (𝑖)

)
∑𝑛

𝑗=𝑖 exp

(
𝑤̃𝜎 ( 𝑗)

) . (9)

Note anyway that the reparametrized variant is equivalent to

the "standard" PL model described in Section 3. In fact, instead of

directly maintaining the weight values, wemaintain their logarithm,

i.e., the following relations hold:𝑤 = exp 𝑤̃ and 𝑤̃ = log𝑤 .

Therefore, by following the general case equations (2) and (4),

given a permutation problem with objective function 𝑓 : S𝑛 → R,
PL-GS aims to optimize

𝐹 (𝑤̃) = 𝐸𝑤̃ [𝑓 (𝜎)] =
∑
𝜎 ∈S𝑛

𝑓 (𝜎)𝑃 (𝜎 |𝑤̃) (10)

by iteratively updating the parameters 𝑤̃ using an estimate of

∇𝑤̃𝐹 (𝑤̃) obtained from 𝜆 sampled permutations 𝜎1, . . . , 𝜎𝜆 , i.e.,

∇𝑤̃𝐹 (𝑤̃) ≈
1

𝜆

𝜆∑
𝑖=1

𝑈 (𝑓 (𝜎𝑖 ))∇𝑤̃ log 𝑃 (𝜎𝑖 |𝑤̃) . (11)

Note that, in equation (11), with respect to equation (4), we trans-

formed the objective value 𝑓 (𝜎) by the (not necessarily strictly)

monotonic transformation𝑈 . This has been already done in similar

contexts [25, 32] in order to improve the effectiveness of the search

process. Note anyway that, by setting𝑈 to the identity transforma-

tion, the original scheme of equation (4) is recovered. In section 4.1

we will refer to𝑈 as utility function and we discuss some possible

choices.

In order to implement PL-GS a formula is required for computing

the gradient of the log-probability (see also line 9 of Algorithm 1).

Given any 𝜎 ∈ S𝑛 and 𝑤̃ ∈ R𝑛 , then, by using some calculus, it is

possible to derive a formula for
𝜕 log𝑃 (𝜎 |𝑤̃)

𝜕𝑤̃𝜎 (𝑖 )
, i.e., the 𝜎 (𝑖)–th entry

of ∇𝑤̃ log 𝑃 (𝜎 |𝑤̃), as follows:

𝜕 log 𝑃 (𝜎 |𝑤̃)
𝜕𝑤̃𝜎 (𝑖)

= 1 − exp
(
𝑤̃𝜎 (𝑖)

) 𝑖∑
𝑘=1

1∑𝑛
𝑗=𝑖 exp

(
𝑤̃𝜎 ( 𝑗)

) . (12)

Interestingly, with simple bookkeeping and by following the or-

der induced by 𝜎 , it is possible to calculate all the 𝑛 entries of

∇𝑤̃ log 𝑃 (𝜎 |𝑤̃) in Θ(𝑛) time steps.

We now have the ingredients to build PL-GS, whose pseudo-

code is provided in Algorithm 2. Note that, in line 3, all the PL

weights are initialized to the same value. With such a configuration,

the PL model is equivalent to a uniform distribution over S𝑛 , thus
PL-GS has no initialization bias. The rest of the algorithm follows

the general scheme presented in Algorithm 1 and introduces an

utility function (see lines 1–2 and equation (4)) and a soft restart
mechanism when numerical accuracy degrades (lines 14–15). These

additional aspects are described in Sections 4.1 and 4.2, respectively.

4.1 Utility functions
Given the samples 𝜎1, . . . , 𝜎𝜆 drawn in a PL-GS iteration, three

utility functions are considered as follows.

Algorithm 2 Plackett-Luce Gradient Search

1: function PL-GS(𝑓 : S𝑛 → R, 𝜂 ∈ R+, 𝜆 ∈ N+,𝑈 : R→ R)
2: require:𝑈 has to be monotonic

3: 𝑤̃𝑡 ← (0, . . . , 0) ⊲ Uniform distribution

4: 𝜎∗ maintains the best permutation so far

5: 𝑡 ← 0

6: while stopping criterion is not met do
7: for 𝑖 ← 1 to 𝜆 do
8: sample 𝜎𝑖 from 𝑤̃

9: evaluate 𝑓 (𝜎𝑖 ) and update 𝜎∗ if improvement found

10: calculate ∇𝑤̃𝑡
log 𝑃 (𝜎𝑖 |𝑤̃𝑡 ) according to eq. (12)

11: end for
12: calculate ∇𝑤̃𝑡

𝐹 (𝑤̃𝑡 ) according to equation (11)

13: 𝑤̃𝑡+1 ← 𝑤̃𝑡 + 𝜂∇𝐹 (𝑤̃𝑡 )
14: if numerical problems occurred then
15: 𝑤̃𝑡+1 ← almost degenerate distr. with mode 𝜎∗

16: end if
17: 𝑡 ← 𝑡 + 1
18: end while
19: return 𝜎∗

20: end function

Fitness.𝑈 is the identity function, i.e.,𝑈 (𝑓 (𝜎𝑖 )) = 𝑓 (𝜎𝑖 ). There-
fore, the fitness values are directly used as they are in the gradient

computation as usual.

Normalized Fitness. 𝑈 (𝑓 (𝜎𝑖 )) = 𝑓 (𝜎𝑖 )/
∑𝜆

𝑗=1 𝑓 (𝜎 𝑗 ), therefore
the utilities sum up to 1 and are proportional to the fitness values.

Super Linear. Sort the samples from the best to the worst in

terms of fitness and set 𝜇 = 𝜆/2. Assign null utility to the 𝜇 worst

samples, while, for the remaining ones, temporarily assign to the

𝑖–th best sample exp(𝑖) points of utility and, finally, normalize the

utilities of the best 𝜇 samples. This utility function makes PL-GS

invariant for monotonic transformations of the objective function

and it is inspired by weights used in the CMA-ES algorithm [16].

4.2 Soft restart
Aswith other discrete GS schemes [4], with the passing of iterations,

PL-GS will tend to converge towards a degenerate configuration of

the probability model, i.e., a configuration of 𝑤̃ such that almost all

the probability mass is concentrated on a single permutation.

However, the PL model has inherent numerical problems. For

the sake of clarity, we use the classical parametrization𝑤 of PL as

described in Section 3. Given any number 𝑟 > 1 and 𝜎 ∈ S𝑛 , by
setting 𝑤 in such a way that

𝑤𝜎 (𝑖 )
𝑤𝜎 (𝑖+1)

≥ 𝑟 for 𝑖 = 1, . . . , 𝑛 − 1, we

have that

𝑃 (𝜎 |𝑤) ≥ 1 − (𝑛 − 1)𝑟−1 . (13)

Therefore, it is possible that almost all the probability is assigned

to a single permutation when 𝑟 reaches a much larger value than 𝑛,

e.g., 10
6
or 10

9
. Clearly, though theoretically possible, numerical

problems arise when this happens. In fact, overflow and underflow

problems were observed in the gradient calculation of equations

(11) and (12).

To address these numerical issues, we devised a simple mecha-

nism: at every iteration of PL-GS we verify if a computation resulted
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in an inf or nan value and, if so, the PL weights 𝑤̃ are reset to a

configuration whose mode is the best permutation so far 𝜎∗.
The reset is carried out by equally spacing the weights of 𝑤̃

in the interval [lb, ub] following the reverse order induced by 𝜎∗,
i.e., 𝑤̃𝜎 (1) = ub and 𝑤̃𝜎 (𝑖+1) = 𝑤̃𝜎 (𝑖) − 𝛿 with 𝛿 = (ub − lb)/(𝑛 −
1). In this way, the probability mass of 𝜎∗ is like in equation (13)

with 𝑟 = exp𝛿 . After some experimentation, lb and ub were set

to, respectively, -10 and 10, independently of 𝑛. This setting did

not result in any numerical problem in our experimentation and,

though not guaranteeing that only 𝜎∗ can be sampled, 𝜎∗ is sampled

most of the times and, when not sampled, the drawn permutation

is very similar to 𝜎∗.

5 EXPERIMENTAL STUDY
In order to validate the idea presented in this paper, we conducted

a set of experiments to (1) analyze the impact of the different utility

functions introduced for PL-GS, (2) study the variability on the

performance of the gradient search subject to 𝜂 and 𝜆 parameters,

and (3) compare the behavior of our proposal to the Plackett-Luce

Estimation of Distribution Algorithm (PL-EDA) [9].

Conducted experiments have been carried on the LOLIB bench-

mark instances of the Linear Ordering Problem (LOP) [29]. In the

LOP, we are given a square matrix B = [𝑏𝑖 𝑗 ]𝑛×𝑛 of parameters and

the goal is to find the simultaneous permutation 𝜎 ∈ S𝑛 of rows

and columns in B such that the sum of the entries above the main

diagonal is maximized. Then, the objective function is denoted as

𝑓 (𝜎) =
𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

𝑏𝜎 (𝑖)𝜎 ( 𝑗) .

5.1 Impact of the utility functions
Based on the optimization framework we proposed, it can be ex-

pected that the utility function should have a meaningful impact

on the convergence of the probability model across the optimiza-

tion process. In this sense, in the following experiment the three

utility functions "Fitness", "Normalized Fitness" and "Super Linear"

explained in the previous section were considered for the analysis.

Particularly, in order to see the level of convergence of the proba-

bility model across the optimization, we calculated the entropy
2
of

the vector of weights w as

𝐻 (w) = −
𝑛∑
𝑖=1

𝑝𝑖 log𝑝𝑖 ,

where 𝑝𝑖 =
𝑤𝑖∑𝑛
𝑗=1 𝑤𝑗

. The parameter 𝜂 was set constant to 0.01,

and three different 𝜆 values {100, 1 000, 10 000} were considered.
Executions were stopped after 10

5
iterations. For the executions,

N-be75eec instance from LOLIB was arbitrarily chosen.

Averaged results of 10 repetitions of each parameter combina-

tion are depicted in Fig. 1. In view of the plots in Fig. 1, as the

optimization progresses, the entropy decreases. This suggests that

the probability mass becomes more concentrated in certain solu-

tions of the search space. However, as expected, the utility function

2
Due to the excessive computational cost of computing the entropy of the PL distribu-

tion, we computed the entropy of the probability of each item of appearing at the first

position. It is our belief that the second entropy measure can be used instead of the

first as concentration measures of the probabilities in the PL distribution.

has a relevant impact on the evolution of the probability model

across the iterations. Despite with the three utility functions, the

entropy is reduced, for the "Fitness" and "Normalized Fitness" func-

tions, the descent is gradual, while for the "Super Linear" approach,

it is steep and gets close to 0.5.

Contrarily, for the "Fitness" and "Normalized Fitness" functions,

in the minimum case the entropy is relatively high. It is worth

noting that a probability distribution with such high entropy is very

close to the uniform distribution, and therefore, such distributions

are not likely to be used for optimization as the convergence speed

of the algorithm is very slow. To illustrate, note that in the minimum

point of the plot, themaximum parameter in the vector of weightsw
was 0.36 and 0.37 respectively, while for the "Super Linear" function

it is 0.91.

Finally, results point out that the convergence degree of the

probability model is not affected by the 𝜆 parameter. However, a

more detailed analysis will be carried out in the next experiment.

In view of the results here, in the following we decided to use the

"Super Linear" utility function exclusively.

5.2 Tuning 𝜂 and 𝜆 parameters
In the literature, in order to obtain good performances, the impor-

tance of properly setting the parameters in the Gradient Search

(in this case, 𝜂 and 𝜆 parameters) has been published many times.

In this sense, in a second experiment, the convergence of the best

objective values obtained across 10
5
iterations is studied. Particu-

larly, three different parameter values for 𝜂 and 𝜆, {0.01, 0.05, 0.1}
and {102, 103, 104}, were chosen, respectively, and PL-GS with all

the pairwise combinations was tested. Averaged results of 10 rep-

etitions on the instance N-be75eec are introduced in Fig. 2. In the

results we can see that in the initial iterations, higher 𝜆 runs obtain

better results, however, as the optimization progresses, algorithms

converge to similar values. The convergence point is affected by

the 𝜂 parameter. In the first figure on the left, the convergence is

the slowest 𝜂 = 0.01, while the figure on the right shows the fastest

convergence with 𝜂 = 0.1. Usually, slow convergence is preferred,

as it is a way to avoid premature convergence of the algorithm.

Regarding 𝜆 parameter, it is worth remembering that when con-

sidering a maximum number of performed objective function evalu-

ations as stopping criterion, higher lambda implies fewer iterations

of the algorithm. Therefore, for the rest of the experimental study,

we think that an adequate parameter choice is 𝜂 = 0.01 and 𝜆 = 100

as it preserves the algorithm from premature convergence, and uses

a low number of samples to update the gradients.

5.3 Performance comparison with PL-EDA
Once the utility function, together with the𝜂 and 𝜆 parameters were

decided for the proposed algorithm, we compared its performance

with respect to the PL-EDA.

Each algorithm, PL-GS and PL-EDA, was run 20 times on the

50 instances of the LOLIB benchmark. In each case, the algorithms

stopped after running 1000𝑛2 evaluations. With respect to the tun-

ing of the PL-EDA, the default parameters and design in [9] were

considered.

5.3.1 Performance results. Results are summarized in Table 1 as

Median Relative Deviations (MRD) with respect to the optimum.
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Figure 1: The entropy of the probabilitymodel defined at each iteration of the PL-GS using the three different utility functions
and 𝜂 = 0.01. Measures of 10 repetitions were averaged, and results for the three different 𝜆 values are presented.

Figure 2: Objective function values obtained by the PL-GS algorithm for different values of 𝜂 and 𝜆 parameters across 10
5

iterations. Particularly,𝜂 ∈ {0.01, 0.05, 0.1} and 𝜆 ∈ {102, 103, 104} parameter values are considered, andmeasures of 10 repetitions
were averaged. Note the 𝑥-axis is in log-scale.

Specifically, median results found across the 20 repetitions were

used, and the difference with respect to the best known results

were normalized with this last value. According to the conducted

experiments, PL-GS obtained the better results in 40 instances out

of 50 instances in the LOLIB, while PL-EDA did so in 9 instances

out of 50 (in the N-t79n11xx instance, both approaches obtained the

same MRD measure).

In order to statistically assess the results obtained, we have

followed the Bayesian approach presented in [3], and used the

Bayesian equivalent of the Wilcoxon’s test
3
. The statistical analysis

was conducted on the MRD obtained by each algorithm in the 20

repetitions. The procedure used requires a quantitative description

of what is understood as ’rope’. In our case, we have considered

that both approaches are equivalent when the difference in MRD is

smaller than 10
−4
. Results of the analysis are depicted in Fig. 3.

As described in [3], the points in the plot represent a sampling

of the posterior distribution of the probability of win-lose-tie. In

other words, the closer a point is to the Gradient vertex of the

triangle, the more probable it is that PL-GS produces better results

(or equivalently, in the other vertices). Therefore, the three areas

delimited by the dashed lines show the dominance regions, i.e., the

area where the highest probability corresponds to its vertex.

3
This statistical analysis is available in the development version of the scmamp R

package [7] available at https://github.com/b0rxa/scmamp.

Figure 3: Simplex plot representing the posterior distribu-
tion of win-tie-lose probabilities of the PL-GS and PL-EDA
algorithms

According to the Simplex plot, there is no uncertainty about the

results. The most of the mass of the posterior probability distri-

bution is close to the PL-GS vertex. Furthermore, the points are

concentrated in a small region of the simplex plot, which reveals

https://github.com/b0rxa/scmamp
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Table 1: Results of the PL-GS and PL-EDA for the LOP instances in the LOLIB benchmark. The Median Relative Deviations
(MRD) measures of the values found across the 20 repetitions of the best known results are reported. Results in bold high-
light the algorithm that obtained the lowest MRD. A maximum number of 1000𝑛2 evaluations were performed by each of the
algorithms.

Size Instance Best Known PL-GS PL-EDA Size Instance Best Known PL-GS PL-EDA

50 N-be75eec 236464 0.00975 0.00986 44 N-t70k11xx 716994 0.00116 0.00311

50 N-be75np 111171 0.00403 0.00425 44 N-t70l11xx 980516 0.00016 0.00048

50 N-be75oi 362512 0.00262 0.00409 44 N-t70n11xx 541393 0.00424 0.00424
50 N-be75tot 553303 0.00331 0.00421 44 N-t70u11xx 209320 0.00187 0.00169
60 N-stabu70 147354 0.00787 0.01357 44 N-t70w11xx 122520 0.00300 0.00526

60 N-stabu74 8261545 0.00764 0.01080 44 N-t70x11xx 20928 0.00240 0.00277

60 N-stabu75 356758 0.00700 0.01252 44 N-t74d11xx 237739 0.00122 0.00113
44 N-t59b11xx 217295 0.00490 0.00155 44 N-t75d11xx 14469163 0.00189 0.00323

44 N-t59d11xx 16719 0.00476 0.01823 44 N-t75e11xx 32157 0.00297 0.00319

44 N-t59f11xx 138181029 0.00047 0.00214 44 N-t75i11xx 771149 0.00179 0.00163
44 N-t59i11xx 528419 0.00046 0.00208 44 N-t75k11xx 376725 0.00127 0.00189

44 N-t59n11xx 366469 0.00282 0.00583 44 N-t75n11xx 360336 0.00515 0.00543

44 N-t65b11xx 24785782 0.00588 0.00481 44 N-t75u11xx 60659200 0.00125 0.00128

44 N-t65d11xx 25253 0.00333 0.00407 56 N-tiw56n54 52704 0.00362 0.00301
44 N-t65f11xx 21716400 0.00544 0.00568 56 N-tiw56n58 224319954 0.00328 0.00350

44 N-t65i11xx 283808865 0.00103 0.00156 56 N-tiw56n62 566089 0.00341 0.00707

44 N-t65l11xx 578304 0.00164 0.00287 56 N-tiw56n66 2739219 0.00560 0.01227

44 N-t65n11xx 63567735 0.00236 0.00516 56 N-tiw56n67 108844 0.00273 0.00813

44 N-t65w11xx 93777 0.00355 0.00591 56 N-tiw56n72 52708323 0.00324 0.02243

44 N-t69r11xx 91554 0.00453 0.00433 56 N-tiw56r54 125224 0.00453 0.00650

44 N-t70b11xx 176715 0.00214 0.00222 56 N-tiw56r58 226547 0.00683 0.00548
44 N-t70d11xx 226033 0.00466 0.00594 56 N-tiw56r66 365146 0.00474 0.01239

44 N-t70d11xxb 102948 0.00253 0.00263 56 N-tiw56r67 129568 0.00294 0.00633

44 N-t70f11xx 209491 0.00599 0.00631 56 N-tiw56r72 222810 0.00545 0.01108

44 N-t70i11xx 270663 0.00162 0.00208 79 N-usa79 1813986 0.01313 0.01303

that the uncertainty related to the experiment is really low. To sum

up, the expected probability of each situation, that PL-GS is (1)

better, (2) equal or (3 ) worse than PL-EDA are 0.835, 0.066 and

0.097, respectively.

5.3.2 Time comparison. For the sake of analyzing the time required

by each of the algorithms to run 1000𝑛2 evaluations and obtain the

results in Table 1, in Fig. 4, a summary of the time consumption of

PL-GS and PL-EDA is provided. Specifically, time measures of the

runs were aggregated by the size of the instances, and presented as

boxplots. The boxplots in the figure show that the time consump-

tion of the PL-GS algorithm is less than PL-EDA, systematically.

Moreover, the results show that the scalability of the proposed al-

gorithm is nearly constant when compared to that of PL-EDA, and

the variance is very low.

6 CONCLUSIONS AND FUTUREWORK
Recently, Gradient Search (GS) has gained relevance due to its ap-

plications for the continuous parameter estimation when training

neural networks. Nevertheless, its application has been mainly

restricted to optimizing problems in the continuous domain, and

works considering amodel-based GS on the combinatorial case have

been limited to a few publications that only consider binary spaces.

In this paper, we approached the optimization of permutation-based

Figure 4: Summary of time required by PL-GS and PL-EDA
algorithms to carry out the executions. Results have been
aggregated by instance size, and presented as boxplots.

problems by means of GS. In particular, we have devised the neces-

sary mathematical tools in order to efficiently compute and update

the continuous parameters of the Plackett-Luce probability model

defined over the set of permutations.
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Interestingly, this work follows the recent trend in the literature

(see for instance [2, 21, 31]) of bringing algorithms originally defined

for the continuous domain to the space of permutations.

Experiments, conducted on a benchmark suite of 50 instances

of the linear ordering problem, proved the validity of our proposal

which obtained better performance and time measures than the

competitor algorithm considered.

Possible future lines of work include trying other flavors of gra-
dient search [11, 28], considering other ordered weighted averaged
operators (OWAs) [33] as utility functions, and self-adapting the 𝜂

and 𝜆 parameters of PL-GS. With regard to the probability model

employed for defining the random variable to optimize, other mod-

els defined over permutation spaces such as Bradley-Terry [27] or

models based on inversion tables [15] could also be considered in

the same context.
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