
An Algebraic Framework for Swarm and Evolutionary
Algorithms in Combinatorial Optimization

Valentino Santuccia,∗, Marco Baiolettib, Alfredo Milanib

a Department of Humanities and Social Sciences, University for Foreigners of Perugia, Italy
b Department of Mathematics and Computer Science, University of Perugia, Italy

Abstract

A popular trend in evolutionary computation is to adapt numerical algorithms

to combinatorial optimization problems. For instance, this is the case of a vari-

ety of Particle Swarm Optimization and Differential Evolution implementations

for both binary and permutation-based optimization problems. In this paper,

after highlighting the main drawbacks of the approaches in literature, we pro-

vide an algebraic framework which allows to derive fully discrete variants of a

large class of numerical evolutionary algorithms to tackle many combinatorial

problems. The strong mathematical foundations upon which the framework

is built allow to redefine numerical evolutionary operators in such a way that

their original movements in the continuous space are simulated in the discrete

space. Algebraic implementations of Differential Evolution and Particle Swarm

Optimization are then proposed. Experiments have been held to compare the

algebraic algorithms to the most popular schemes in literature and to the state-

of-the-art results for the tackled problems. Experimental results clearly show

that algebraic algorithms outperform the competitors and are competitive with

the state-of-the-art results.

Keywords: Algebraic Evolutionary Algorithms, Combinatorial search spaces,

Algebraic Evolutionary Computation

∗Corresponding author
Email address: valentino.santucci@unistrapg.it (Valentino Santucci)

Preprint submitted to Swarm and Evolutionary Computation April 23, 2020

1. Introduction

Swarm and evolutionary meta-heuristics are widely applied to solve complex

optimization problems where traditional techniques are not able to produce good

solutions in a reasonable amount of time. By a slight abuse of terminology, in

this article the term Evolutionary Algorithms (EAs) is used to refer to meta-5

heuristics based on both evolutionary and swarm intelligence principles.

Depending on the nature of the solution set, it is possible to distinguish

between continuous and combinatorial optimization problems and, as a con-

sequence, between numerical and combinatorial EAs. The former work with

solutions represented as real vectors, while the latter tackle problems whose10

solutions are discrete objects like, for example, bit-strings or permutations.

Though there exist EAs specifically designed to evolve discrete solutions, the

wide availability of algorithms for continuous optimization has given rise to a

plethora of numerical EAs adapted to solve combinatorial problems. Among

them, see for instance the algorithms described in [1, 2, 3, 4, 5]. One possible15

motivation for this proliferation is that many nature-inspired algorithms have

been historically defined for numerical problems. Therefore, in order to solve

a combinatorial problem with a natural principle, it is often easier to adapt an

existing numerical algorithm than to design a new combinatorial EA.

One of the most used and general technique to adapt a numerical EA to20

combinatorial problem is to employ decoding procedures which transform nu-

meric vectors into valid discrete solutions for the representation at hand. For

instance, the random-key decoder [6] converts a vector in Rn to a permutation

of n integers by sorting the vector indexes according to the corresponding vector

values. Decoder-based schemes have been also proposed to transform numeric25

vectors into bit-strings [7, 2]. However, this approach has several issues:

• often, the reported good results are only obtained by hybridizing the

adapted EA with other techniques (local searches, heuristic functions,

restart mechanisms, etc.) and, as far as we know, no study is provided to

understand if the adapted EA alone is effective or not;30

2

• due to obvious cardinality reasons, a single discrete solution can be en-

coded by a potentially infinite number of numeric vectors, thus introducing

large plateaus in the fitness landscape navigated by the underlying algo-

rithm;

• the intuition of how the EA searches and moves in the continuous space,35

for which it has been originally designed, is completely lost when the algo-

rithm is integrated with a decoding procedure and its moves are observed

in the combinatorial space.

In a previous series of papers [8, 9, 10, 11, 12, 13], we have proposed discrete

evolutionary algorithms, based on algebraic properties of the permutation space,40

which have reached remarkable results on the permutation flowshop scheduling

and the linear ordering problem.

The main contribution of this article is the extension of the approach to a

general algebraic framework by which it is possible to derive algebraic variants of

many of the numerical EAs available in literature in order to tackle a large class45

of combinatorial optimization problems. Conversely from most of the decoder-

based schemes, an algebraic algorithm directly evolves a population of discrete

solutions by redefining the evolutionary operators of the numerical EA from

which it is derived in such a way that the original movements in the continuous

space are simulated in the discrete space.50

The proposed method requires that the solution set X forms a finitely gen-

erated group. This algebraic structure automatically gives rise to neighborhood

relations on X, thus the search space can be seen as a graph of interconnected

solutions. For binary and permutation problems, the induced search spaces are

exactly the same spaces widely considered in the fields of local searches and55

fitness landscape analysis [14, Ch. 5]. In analogy to what happens in Rn,

the algebraic structure also allows to dichotomously interpret discrete solutions

both as points and as displacements (i.e., vectors) between points in the space.

Hence, it is possible to introduce the operations of addition, subtraction, and

scalar multiplication on X with similar properties as the corresponding vector60

3

operations of Rn. Therefore, these operations allow to consistently redefine the

move equations of most numerical EAs in combinatorial search spaces.

To show the potential of the framework, in this paper we provide Algebraic

EAs (AEAs) derived from differential evolution [15] and particle swarm opti-

mization [16]. Abstract definitions, valid for any finitely generated group, are65

introduced for both AEAs together with their implementations for the search

spaces of bit-strings and permutations. Note anyway that the framework is gen-

eral enough to allow the discretization of other numerical algorithms such as, for

instance, the firefly algorithm [17] or the bacterial foraging optimization [18].

Experiments have been held with the aim of comparing the effectiveness of70

the proposed algorithms with respect to the numerical decoder-based EAs and

the state-of-the-art results. NK landscapes [19] have been considered as binary

benchmarks, while, for the permutation search space, the experiments have

been held on standard instances of the permutation flowshop scheduling [20]

and linear ordering problem [21].75

In the first set of experiments, both our algorithms and the competitors’ have

been implemented in their standalone versions. A second set of experiments has

been held in order to compare AEAs with the corresponding numerical decoder-

based EAs by incorporating additional techniques such as heuristic functions,

local search procedures, restart mechanisms, and self-adaptive strategies. Fur-80

thermore, the AEAs results have been compared with the best known solutions

in literature.

The rest of the paper is organized as follows. Section 2 describes the most

used techniques for adapting continuous EAs to discrete problems, and Section

3 provides a critical analysis of the decoder-based approach. Section 4 provides85

mathematical background concepts used in Section 5, where the algebraic struc-

ture and the vector operations of combinatorial search spaces are introduced.

The definitions of the algebraic EAs are then provided in Section 6. The exper-

imental analysis is provided in Section 7. Finally, Section 8 concludes the paper

by also providing future research directions.90

4

2. Related work

2.1. Differential Evolution and Particle Swarm Optimization

Among the numerical evolutionary algorithms in literature, Differential Evo-

lution and Particle Swarm Optimization are the most studied and effective. Here

we briefly describe them.95

The Differential Evolution (DE) algorithm has been originally introduced

in [15]. Its key operator is the differential mutation that, in the most used variant

rand/1, for every population individuals xi, generates a mutant yi according to

the following formula

yi ← xr0 + F · (xr1 − xr2), (1)

where F ≥ 0 is the scale factor parameter of DE [22], and xr0 , xr1 , xr2 are

three randomly chosen population individuals different from each other and with

respect to xi. Then, a crossover operator is applied to yi and xi to generate

the trial solution zi that, if fitter than xi, replaces it in the next generation

population.100

The Particle Swarm Optimization (PSO) algorithm has been originally in-

troduced in [16]. PSO iteratively evolves a population of so-called particles. The

i-th particle of the population is composed by the current position vector xi,

the velocity vector vi, the personal best pi, and the neighborhood best gi. The

communication among the particles is modeled by defining a neighborhood Ni
for every particle i. A variety of neighborhood topologies are possible. One of

the most used is the ring topology, where the particles are statically arranged

in a ring such that any particle has a neighbor to its left and one to its right.

In PSO, at every generation, the velocity and the current position of every

particle i are updated according to:

vi ← [w · vi] + [(c1 · r1i) · (pi − xi)] + [(c2 · r2i) · (gi − xi)], (2)

xi ← xi + vi, (3)

5

where r1i, r2i ∈ [0, 1] are randomly generated at every step, and w, c1, c2 ≥ 0

are the three PSO parameters called, respectively, inertial, cognitive and social

coefficient. Then, the new position xi updates the personal best pi if fitter,

while gi is replaced with the fittest vector among the particles in Ni.

2.2. Combinatorial variants of numerical EAs105

Although DE and PSO are defined for continuous problems, in the litera-

ture there are innumerable attempts to use them in combinatorial optimization.

Often, they differ from each other in few details, thus we are here interested

in taxonomizing the approaches used for the discretization of a numerical EA.

With this regard, two main classes of approaches can be distinguished.110

In the first class, the evolutionary algorithms are based on the redefinition

of the numerical operators of addition, subtraction, and multiplication. In this

way, they can directly use discrete objects with formulae similar to (1), (2), and

(3). Most algorithms of this class use ad-hoc definitions of the operators, thus

preserving little more than the name of the numerical EAs from which they are115

derived. For example, the discrete operations used in [23, 24, 25, 26] have just

a vague resemblance with the corresponding numerical versions.

In other cases, a more principled method of defining the operators is adopted.

For instance, Set-based PSO [27] and DE [28] evolve a set representation of

the discrete solutions by employing set-theoretical operators. These schemes120

have been applied to the traveling salesman problem and the multidimensional

knapsack problem. Their main difference with respect to our approach is that

they require a new set-based representation of the solutions, while our proposal

adopts the classical (binary and permutation) representations. Another impor-

tant difference is that [27, 28] require the concept of dimension (which is not125

required in our proposal) and may introduce constraints among the dimensions

of a solution. For this reason, it is difficult to encode, by using the set-based

representation, the solutions of a generic permutation-based problem. Indeed,

though in [27] a set-based representation for the traveling salesman problem

(TSP) is presented, this one relies on the fact that a TSP solution is a collection130

6

of arcs (with constraints), thus it cannot be generalized to other permutation

problems such as the ones tackled in the experimental part of this work.

More general methods based on the operators’ redefinition which are some-

how in line with our algebraic EAs can be found in [29] and [30]. In these works,

the subtraction operation x−y is defined in terms of a sequence of moves which135

transform y into x. As we will see later, our proposal belongs to this class and

its main difference with [29, 30] is that, in our approach, solutions and moves

between solutions use the same representation, thus allowing additions, sub-

tractions and scalar multiplications without any restriction. Furthermore, our

approach is general enough to cover different search spaces.140

The second class of approaches is based on decoder procedures. Discrete

solutions of combinatorial problems are often represented using a proper subset

X of the numeric vectors in Rn, i.e., X ⊂ Rn. For instance, bit-strings are

0/1 vectors, while a permutation can be represented as a vector of (all differ-

ent) integers. However, these vectors are transformed by the move operators to145

vectors which almost always lie outside the feasible space X. To overcome this

issue, continuous-to-discrete decoding schemes have been proposed to transform

a numeric vector into a valid solution. Practically, decoder procedures can be

devised for any representation and incorporated in any numerical algorithm.

For this reason, we focus on decoder-based schemes on the experimental com-150

parison provided in Section 7. However, though widely used in literature (see

for example [7, 2, 31, 5]), this approach has some drawbacks. The most im-

portant one is that the intuition of how the underlying numerical EA searches

and moves in the continuous space for which it has been originally designed is

totally lost when the same algorithm is integrated with a decoding procedure155

and its search moves are observed in the combinatorial space. In the following,

for the sake of comparison, we briefly describe the most popular combinatorial

algorithms based on numerical decoders.

7

2.3. Binary EAs based on Probabilistic Decoders

Binary variants of DE [32] and PSO [7], to which we refer to as BDE and160

BPSO, aim to optimize an objective function of the form f : Bn → R, where

B = {0, 1}. They evolve a population of bit-strings by mainly using the move

operators of their numerical counterparts. Then, as soon as an unfeasible vector

is generated, it is transformed back to a valid binary solution by means of a

probabilistic decoder. Formally, given the non-binary vector x ∈ Rn, each of165

its components xi is converted to 1 or 0 with probability S(xi) and 1 − S(xi),

respectively. The sigmoid function S(t) = (1 + e−t)
−1

is used to monotonically

map any real number t to a probability value S(t) ∈ [0, 1].

In BDE [32], only the differential mutation of equation (1) can generate a

non-binary vector. Hence, the components of a mutant y ∈ Rn are converted to170

bit values according to the probability given by S
(

2b(yi−0.5)
1+2F

)
, where b > 0 is a

further algorithmic parameter called bandwidth factor.

BPSO [7] encodes particle positions as binary strings and velocities as nu-

meric vectors. Hence, a velocity vector v ∈ Rn is updated as usual using equa-

tion (2). Then, v is used to generate the update probabilities for its correspond-175

ing particle position x, i.e., the i-th bit of x is set to 1 or 0 with probability

S(vi) and 1− S(vi), respectively.

Applications of BDE and BPSO have been proposed, for instance, in [33,

34, 35, 36]. Finally, there have been proposals to use, in place of the sigmoid

function, other mathematical functions which generate probabilities: a review180

of them can be found in [1].

2.4. Angle Modulated EAs

The angle modulation technique, first introduced in [37], allows to trans-

form a four-dimensional numeric vector to an n-length binary string, for any

dimensionality n.185

Formally, [37] introduces a decoder function AM : R4 → Bn which can be

used by any numerical algorithm A to optimize an objective function of the

8

form f : Bn → R. The only modification to A is to consider f(AM(x)) as the

fitness value of a generic individual x ∈ R4.

Let x = (a, b, c, d) and its corresponding binary string be y = AM(x), then

the i-th bit of y is computed as

y(i) =

1 if g(i− 1) > 0

0 otherwise,

(4)

where g(t) = sin(2π · (t − a) · b · cos(2π · (t − a) · c)) + d is called generating190

function in [37].

Angle modulated variants of DE and PSO, i.e., AM-DE and AM-PSO, have

been introduced in, respectively, [2] and [37], while further applications are

proposed in [38, 39].

2.5. Random-Key based EAs195

The Random-Key (RK) technique has been introduced in [6] to tackle per-

mutation optimization problems.

Formally, [6] introduces a decoding function RK : Rn → Sn (where Sn is

the set of permutations of [n] = {1, . . . , n}) which can be used by any numerical

algorithm A to optimize an objective function of the form f : Sn → R. Also200

in this case, the only modification to A is to consider f(RK(x)) as the fitness

value of a generic individual x ∈ Rn.

RK transforms x to the permutation π such that the sequence xπ(1), . . . , xπ(n)

is increasingly ordered. For example, if x = (0.46, 0.91, 0.33, 0.75, 0.51), the de-

coded permutation is π = RK(x) = 〈3, 1, 5, 4, 2〉. Therefore, RK requires to205

sort the component indexes of x according to their corresponding values. This

can be done in Θ(n log n) time.

Also a simple variant of RK has been considered in literature, see for instance

[40] and [5]. In this variant, a vector x is decoded to the permutation ρ such that

ρ(i) = ri, where ri is the rank of xi among the vector components x1, . . . , xn210

sorted in increasing order. It is easy to see that this decoding scheme can

be obtained by inverting the result of RK, i.e., ρ = (RK(x))
−1

. Therefore,

9

we generalize random-key by considering the parametrized decoder RKk where

k = ±1.

Random-key variants of DE and PSO, i.e., RK-DE and RK-PSO, have been215

used in many works. See for instance [31, 41, 3, 42, 43].

3. Critical analysis of the decoder-based approaches

The decoder-based approaches have two inherent drawbacks: a single dis-

crete solution can be encoded by a potentially infinite number of numeric vec-

tors, and the distance relationships among the discrete objects can be completely220

upset after the embedding in the continuous space.

The probabilistic decoders described in Section 2.3, though their non-deterministic

nature can sometime help to exit search stagnation, introduce a large amount

of spatial distortion. Indeed, given a fixed numeric vector, performing multiple

decoding steps can result in very different bit-strings. As an extreme example,225

let consider a BPSO particle with a zero vector as velocity. Since S(0) = 0.5,

there is equal probability to have a 0 or a 1 for every bit in the decoded bit-

string. Hence, the zero vector can be decoded in any one of the 2n bit-strings

with uniform probability, thus completely losing its original “identity”.

Regarding the angle modulated approach (see Section 2.4), no explicit proof230

that equation (4) allows to cover the whole space Bn for any n is provided in

the literature. Moreover, by measuring the distances in the numeric and binary

spaces by, respectively, the Euclidean and Hamming distance, we have that dis-

tant numeric vectors may correspond to close bit-strings and vice versa. For in-

stance, the Euclidean distance between the vectors x = (−6.94, 8.24, 0.68, 0.08)235

and y = (−6.89, 8.31, 0.72, 0.11) is around 0.1 (a relatively small number with

respect to the vector values) but, when n = 50, AM(x) differs from AM(y)

for 23 bits, i.e., almost half the total number of bits. On the other hand, the

vectors (3.36,−6.6,−2.96, 1.1) and (34.56, 27.14, 10.74, 15.26) are very different

(their Euclidean distance is around 50), but they encode exactly the same bit-240

string (again, with n = 50).

10

Similar scenarios happen with the random-key approaches (see Section 2.5).

Here we only consider RK−1, though the space distortion induced by RK+1 is

even more pronounced. For example, the two vectors x = (0.46, 0.91, 0.33, 0.75, 0.51)

and y = (0.4, 0.9, 0.3, 0.7, 0.5) correspond to the same permutation, i.e., RK−1(x) =245

RK−1(y) = 〈3, 1, 5, 4, 2〉. The vectors x and y have a small Euclidean dis-

tance, but the same problem can also happens for vector pairs whose dis-

tance is arbitrarily large. As an example, let consider the family of vectors

y∆ = (0.4, 0.9+∆, 0.3, 0.7, 0.5) which encode the same permutation 〈3, 1, 5, 4, 2〉

for every choice of ∆ ≥ 0. At the same time, given an ε > 0, we can find, for250

every possible permutation π ∈ Sn, a vector x ∈ Rn such that its Euclidean

distance from the zero vector is ε and RK−1(x) = π.

Finally, we have conducted an experiment in order to show the weak corre-

lation between the distances on the continuous and on the permutation space.

We have considered the classical distance functions: Euclidean distance for the255

continuous space, and Kendall’s-τ distance for permutations (i.e., the number

of pairwise disagreements between two permutations). Given σ > 0, 10 000

pairs of vectors xi, yi ∈ R10 have been generated such that d(xi, yi) = σ. The

Kendall’s-τ distance between RK−1(x) and RK−1(y) has been computed as

well. Different values of σ in the range [0.1, 3] have been considered. The graph260

in Figure 1 clearly shows that, though in average both distances have a simi-

lar behavior, the variability in terms of Kendall’s-τ distance explodes when the

Euclidean distance σ increases. Therefore, a large number of nearby vectors

correspond to far away permutations and vice versa.

4. Algebraic Background265

In many combinatorial optimization problems, the set of discrete solutions

X is naturally endowed with a composition operator, i.e., there exists a binary

operator ? such that, given two solutions x, y ∈ X, then x?y is again a solution.

Often, X and ? satisfy the group properties [44]. As we will see later, this is the

case of the binary and permutation representations that are quite ubiquitous in270

11

Figure 1: Boxplot chart showing the correlation between Euclidean distance and Kendall’s-τ

distance.

combinatorial problems: for example in the binary knapsack problem or in the

permutation flowshop scheduling problem.

The algebraic structure of the seach spaces allows to characterize the geom-

etry of the search space and to describe the search moves. Usually, the search

algorithms do not explicitly exploit the algebraic properties of the search spaces.275

Therefore, the aim of the paper is to show how groups can be used in evolu-

tionary algorithms, while the rest of this section is devoted to introduce the

mathematical concepts used later on.

4.1. Groups

A group [44] is an algebraic structure (X, ?) where X is a set and ? is a280

binary operation on X which fulfills the following properties:

• for all x, y, z ∈ X, x ? (y ? z) = (x ? y) ? z (associativity);

• there exists a unique element e ∈ X such that, for all x ∈ X, x ? e =

12

e ? x = x (neutral or identity element);

• for every x ∈ X, there exists a unique element x−1 ∈ X such that x?x−1 =285

x−1 ? x = e (inverse element).

If ? is commutative, i.e., for all x, y ∈ X, x ? y = y ? x, then the group is called

Abelian.

A group (X, ?) is finitely generated if there exists a finite subset H ⊆ X

such that any x ∈ X can be written as a composition of elements in H, i.e.,290

x = h1 ? h2 ? · · · ? hl for some h1, h2, . . . , hl ∈ H. H and its elements are called,

respectively, the generating set and the generators of X, while the sequence

〈h1, h2, . . . , hl〉 is a decomposition of x. Usually, though not strictly necessary,

H is closed with respect to inversion, i.e., for all h ∈ H also h−1 ∈ H.

Generally, every x ∈ X has many decompositions with possibly different295

lengths. Hence, a useful concept is that of minimal decomposition. A decom-

position 〈h1, h2, . . . , hl〉 of a given x ∈ X is minimal if, for any other decompo-

sition 〈h′1, h′2, . . . , h′m〉 of x, we have l ≤ m. Even minimal decompositions are

not unique in general, but it is possible to define the weight |x| as the length of

the minimal decompositions of x.300

Minimal decompositions allow also to define a partial order on X. Given

x, y ∈ X, we write x v y if, for each minimal decomposition sx of x, there exists

a minimal decomposition sy of y such that sx is a prefix of sy.

Furthermore, if X is finite, there exists at least one maximal weight element.

For the sake of presentation, here we focus on groups with a unique maximal305

weight element ω such that x v ω for all x ∈ X.

4.2. Cayley Graphs

Every group (X, ?), finitely generated by H, geometrically corresponds to

the Cayley graph C(X, ?,H), i.e., the labeled digraph whose vertexes are the

elements of X and there is an arc from x to y labeled by h ∈ H if and only if310

y = x ? h. The graph C(X, ?,H) is:

13

• strongly connected, i.e., for all x, y ∈ X there is a directed path from x to

y and from y to x;

• regular, i.e., every vertex has the same number of incoming and outgoing

arcs;315

• vertex-transitive, i.e., every vertex has the same set of (incoming and

outgoing) arc labels.

These properties guarantee that, for any possible sequence of generators s and

for any element x ∈ X, C(X, ?,H) has exactly one path which starts from the

vertex x and whose arcs are labeled according to s. In the Cayley graph, for320

all x ∈ X, each directed path from the group identity e to x corresponds to a

decomposition of x: if the arc labels occurring in the path are 〈h1, h2, . . . , hl〉,

then x = h1?h2?· · ·?hl. As a consequence, shortest paths from e to x correspond

to minimal decompositions of x. Hence, if e
h1−→ x1

h2−→ x2
h3−→ · · · hl−→ xl is a

shortest path in C(X, ?,H), then, for any integer i ∈ [1, l], 〈h1, . . . , hi〉 is a325

minimal decomposition of xi, and |xi| = i. Moreover, given x, y ∈ X, x v y if

and only if there exists at least one shortest path from e to y passing by x.

More generally, for all x, y ∈ X, any path from x to y in C(X, ?,H) has an

algebraic interpretation. If the arc labels in the path are 〈h1, h2, . . . , hl〉, then

x?(h1 ?h2 ? · · ·?hl) = y. Hence, 〈h1, h2, . . . , hl〉 is a decomposition of x−1 ?y. In330

particular, shortest paths correspond to minimal decompositions. Starting from

this observation, it is possible to define a distance d on the group X generated

by H. For all x, y ∈ X, d(x, y) is the length of a shortest path from x to y

in C(X, ?,H) or, equivalently, d(x, y) = |x−1 ? y|. If H is closed with respect

to inversion, the neighborhoods of C(X, ?,H) are symmetric and d is a metric335

distance. Finally, the diameter D of a Cayley graph is equal to the maximal

weight, i.e., D = |ω|.

4.3. Bit-String Group

The set Bn = {0, 1}n of the n-length bit-strings forms a group with respect to

the bitwise XOR, denoted by Y. The identity is the “all 0s string” 0. Moreover,340

14

Y is commutative and x−1 = x, for all x ∈ Bn.

The most natural and elementary generating set of Bn is the subset of the

n bit-strings with exactly one 1-bit, i.e., the set U = {ui ∈ Bn : ui(i) =

1 and ui(j) = 0 for j 6= i}, where ui(k) is the k-th bit of the string ui. It is

important to note that x Y ui corresponds to flipping the i-th bit of x.345

The maximal weight element of Bn with respect to U is the “all 1s string”

1. Hence, the Cayley graph diameter is n.

Furthermore, the group weight is the Hamming weight, the group distance

is the Hamming distance, and the Cayley graph is the binary hypercube.

4.4. Permutation Group350

The set Sn of the permutations of [n] = {1, 2, . . . , n} forms a group, called the

symmetric group, with respect to the composition operator ◦. Given π, ρ ∈ Sn,

π ◦ ρ is defined as the permutation (π ◦ ρ)(i) = π(ρ(i)) for all the indices i ∈ [n].

Sn is not Abelian and its identity is the permutation e such that e(i) = i for all

i ∈ [n].355

Different generating sets are possible in Sn (see [9, 45, 46]). One of the

most elementary is the subset of the n − 1 simple transpositions, i.e., the set

ST = {σi ∈ Sn : 1 ≤ i < n}, where σi is defined as: σi(i) = i+ 1, σi(i+ 1) = i,

and σi(j) = j for j ∈ [n] \ {i, i+ 1}. Since the inverse of a simple transposition

is itself, ST is closed with respect to inversion. The maximal weight element of360

Sn, with respect to ST , is the permutation r such that r(i) = n + 1 − i for all

i ∈ [n]. Its weight, thus the Cayley graph diameter, is
(
n
2

)
.

For all π ∈ Sn, the composition π ◦ σi corresponds to swap the adjacent

items at positions i and i+1 in π. The weight |π| is equivalent to the number of

inversions in π, i.e., the pairs of indexes i, j ∈ [n] such that i < j and π(i) > π(j).365

Finally, the distance d(π, ρ) between π, ρ ∈ Sn is known as bubble-sort distance

and counts the minimum number of adjacent swaps required to transform π in

ρ (or vice versa) [45].

15

5. Algebra of Combinatorial Search Spaces

In all the combinatorial optimization problems, the search space is usually370

described by the set X of discrete solutions and the set O of operators, such that

any o ∈ O can be applied to any solution x ∈ X to obtain a (neighbor) solution

o(x) ∈ X. Therefore, the neighborhood of any x ∈ X is N (x) = {y ∈ X :

∃o ∈ O s.t. y = o(x)}. Usually, O contains the most elementary variations of

the solution representation adopted, e.g., bit-flips for binary strings or adjacent375

swaps for permutations.

It is important to note that, in many cases, the search space (X,O) has an

algebraic structure: it can be represented by a finitely generated group. This

happens when there exist:

1. a binary operation ? satisfying the group properties on X,380

2. a finite subset H ⊆ X that generates the group (X, ?), and

3. a one-to-one correspondence which associates to every o ∈ O a generator

h ∈ H such that o(x) = x ? h.

This algebraic structure gives rise to a Cayley graph that geometrically repre-

sents the search space and the same neighborhood relations induced by O. For385

instance, the previously described Bn and Sn are search spaces representable

by finitely generated groups. Moreover, though not studied in this paper, also

other search spaces satisfy the properties (1–3) like, for instance, the space of

integer vectors.

In the rest of this section we show how, in a combinatorial search space390

represented by a group (X, ?) finitely generated by H, it is possible to naturally

introduce the operations of addition ⊕, subtraction 	, and scalar multiplication

� in a meaningful way and with similar properties as the analogous operations of

the Euclidean vector space. This, in turn, will allow to consistently redefine the

move equations of numerical EAs (like differential evolution or particle swarm395

optimization) for combinatorial search spaces.

The key observation is the dichotomous interpretation of an element of X.

From Section 4, any element x ∈ X can be decomposed and seen as a sequence

16

of generators, hence x corresponds to a sequence of arc labels in several paths of

C(X, ?,H). This observation is crucial, because the elements of X can be seen400

both as points, i.e., vertices in the Cayley graph, and as vectors1, i.e., sequences

of generators in shortest paths of the Cayley graph.

5.1. Abstract Addition and Subtraction

The addition z = x ⊕ y is defined as the application of the vector y ∈ X

to the point x ∈ X. The result z is computed by choosing a decomposition

〈h1, h2, . . . , hl〉 of y and by finding the end point of the path which starts from

x and whose arc labels are 〈h1, h2, . . . , hl〉, i.e., z = x ? (h1 ? h2 ? · · · ? hl).

By noting that h1 ? h2 ? · · · ? hl = y, the addition ⊕ is independent from the

generating set and is defined as

x⊕ y := x ? y. (5)

Continuing the analogy with the Euclidean space, the difference between two

points is a vector. Given x, y ∈ X, the difference y	x produces the sequence of

labels 〈h1, h2, . . . , hl〉 in a path from x to y. Since h1 ?h2 ? · · · ?hl = x−1 ? y, we

can replace the sequence of labels with its product, thus making the difference

independent from the generating set. Therefore, 	 is uniquely defined as

y 	 x := x−1 ? y. (6)

Both ⊕ and 	, like their numerical counterparts, are consistent with each

other: x⊕ (y 	 x) = y for all x, y ∈ X.405

5.2. Abstract Scalar Multiplication

Again, as in the Euclidean space, it is possible to multiply a vector by a

non-negative scalar in order to stretch its length.

Given a ≥ 0 and x ∈ X, we denote their multiplication with a � x and we

first identify the conditions that a�x has to verify in order to simulate, as much410

as possible, the scalar multiplication of vector spaces:

1Here, with “vector” we intend “free vector”, i.e., a vector without point of application.

17

(C1) |a� x| = da · |x|e;

(C2) if a ∈ [0, 1], a� x v x;

(C3) if a ≥ 1, x v a� x.

Clearly, the scalar multiplication of Rn satisfies a slight variant of (C1) where the415

Euclidean norm replaces the group weight and the ceiling is omitted. Besides,

similarly to scaled vectors in Rn, (C2) and (C3) intuitively encode the idea that

a� x is the element x scaled down or up, respectively.

It is important to note that, fixed a and x, there may be more than one

element of X satisfying (C1–C3). This is a clear consequence of the non-420

uniqueness of minimal decompositions. Therefore, different strategies can be

devised to compute F �x. Nevertheless, since our aim is to apply the operation

in evolutionary algorithms, we denote with a � x a randomly selected element

satisfying (C1–C3).

Note also that the diameter D induces an upper bound on the possible425

values for the scalar a. For any x ∈ X, let ax = D
|x| , if a > ax, (C1) would imply

|a� x| > D, which is impossible. Therefore, we define

a� x := ax � x, when a > ax. (7)

For the sake of clarity, we separately define the operation a� x for the two

cases a ∈ [0, 1] and a > 1.

Both cases employ an abstract procedure which returns a randomly selected430

minimal decomposition of the element in input.

When a ∈ [0, 1], let l = |x| and consider a random shortest path from e

to x such as e
h1−→ · · · hk−→ xk · · ·

hl−→ xl, where xl = x. For the Cayley graph

properties, (C1) and (C2) are satisfied by setting a � x = xk, with k = da · le.

Moreover, when a = 1, a� x = x and this satisfies both (C2) and (C3).435

When a > 1, let l = |x| and consider a random shortest path from e to ω

passing by x such as e
h1−→ · · · hl−→ xl

hl+1−−−→ · · · hk−→ xk
hk+1−−−→ · · · hD−−→ ω, where

xl = x. For the Cayley graph properties, (C1) and (C3) are satisfied by setting

a� x = xk, with k = da · le.

18

Anyway, it is possible to make the computation more efficient by exploiting440

that a� x = (h1 ? · · · ? hl) ? (hl+1 ? · · · ? hk) = x ? (hl+1 ? · · · ? hk), thus only the

sub-path from x to ω, which forms a minimal decomposition of ω	x = x−1 ?ω,

needs to be known. Since |x| + |x−1 ? ω| = D, thus |x| = D − |x−1 ? ω|, then

a�x can be computed by taking a minimal decomposition of x−1?ω, truncating

it after da · |x|e − |x| generators, and right-composing the truncated sequence445

with x.

These two abstract methods are valid for any finitely generated group. Their

implementations mainly require a concrete randomized decomposition algorithm

for the group at hand.

5.3. Vector Operations for Bit-Strings450

The bit-string representation can be used in a very large number of problems

such as, for example, NK landscape optimization, binary knapsack problems,

number partitioning, any subset selection problem, etc. As described in Section

4.3, for the search space of bit-strings Bn, we consider the bitwise XOR operator

Y and the generating set U representing the bit-flip moves.455

Thanks to properties of this group, ⊕ and 	 coincide and are defined as

x⊕ y = x	 y := x Y y. (8)

These operations are both commutative, and the time complexity to compute

them is Θ(n).

The operation � is implemented by considering that the search space di-

ameter is n and the maximal weight bit-string is the “all 1s string” 1. The

randomized decomposition algorithm is RandBits, presented in Algorithm 1.460

RandBits produces a random minimal decomposition of x by returning a ran-

dom permutation of the generators corresponding to the 1-bits of x. RandBits

and � can be computed in time Θ(n).

For the sake of clarity, we provide an illustrative example. Let consider the

two bit-strings of n = 5 bits x = (10101) and y = (01100). We compute the465

difference z = x 	 y = x Y y = (11001) which, as expected, has a 1-bit in the

19

Algorithm 1 Randomized decomposition algorithms for bit-strings

1: function RandBits(x)

2: s← 〈 〉 . s is a sequence of generators

3: for i← 1 to n do

4: if x(i) = 1 then . x(i) is the i-th bit of x

5: s← Concatenate(〈ui〉, s) . ui is a generator

6: s← Shuffle(s) . Uniform random shuffle of s

7: return s . s is now a min. decomposition of x

8: end function

positions where x and y differ. Adding z to y, as expected, we get back to x,

i.e., y ⊕ z = y Y z = (10101) = x. Now, let a = 0.66 and let analyze the scalar

multiplication a� z. First, a (random) minimal decomposition of z is obtained

as follows: RandBits(z) = 〈u5, u1, u2〉, where the ui are the generator bit-strings470

with exactly one 1-bit (see Section 4.3). From the decomposition it is easy to

see that |z| = 3, thus the computation of 0.66�z simply requires to compose the

first d0.66 · 3e = 2 generators of z, i.e., 0.66� z = u5 Yu1 = (00001)Y (10000) =

(10001). The case a > 1 is slightly different. Let analyze the computation of

1.33�z. First, we need the maximum-weight bit-string 1 = (11111) (see Section475

4.3) and a (random) minimal decomposition of the difference 1 	 z = (00110),

i.e., RandBits(1 	 z) = 〈u4, u3〉. Exploiting the equivalences D = n = 5 and

|z|+ |1	 z| = D, we compute, as expected, |z| = 3. Therefore, 1.33� z simply

requires to compose z with the first d1.33 · 3e − 3 = 1 generator of 1 	 z, i.e.,

1.33� z = z Y u4 = (11011).480

5.4. Vector Operations for Permutations

The permutation representation can be used in many problems such as, for

example, the linear ordering problem, the permutation flowshop scheduling, the

quadratic assignment problem, etc. As described in Section 4.4, for the permu-

tation space Sn, we consider the composition operator ◦ and the generating set485

ST representing the adjacent swap moves.

20

The operations ⊕ and 	 are defined as:

x⊕ y := x ◦ y, (9)

y 	 x := x−1 ◦ y. (10)

Both are non-commutative and can be computed in time Θ(n).

The operation � is implemented by considering that the search space diam-

eter is
(
n
2

)
and the maximal weight permutation is the reversed identity r. The

randomized decomposition algorithm is RandBS, presented in Algorithm 2.490

RandBS iteratively sorts x in increasing order (hence obtaining e) by itera-

tively choosing a random adjacent swap moves from the set of adjacent inversions

A. Then, A is efficiently updated by considering that the adjacent swap σi can

only affect three adjacent inversions (i − 1, i), (i, i + 1), (i + 1, i + 2). As also

highlighted in [8], RandBS and � are computed in time Θ(n2).495

Algorithm 2 Randomized decomposition algorithms for permutations

1: function RandBS(x)

2: s← 〈 〉 . s is a sequence of generators

3: A← {σi ∈ ST : i < i+ 1 and x(i) > x(i+ 1)}

4: while A 6= Ø do . A 6= Ø ⇐⇒ x 6= e

5: σ ← select an element from A uniformly at random

6: x← x ◦ σ . σ is a generator

7: s← Concatenate(〈σ〉, s)

8: A← Update(A, σ) . Θ(1) complexity

9: return s . s is now a min. decomposition of x

10: end function

For the sake of clarity, we provide an illustrative example. Let consider the

two permutations of n = 5 items x = 〈12534〉 and y = 〈41532〉. In order to

compute the difference x 	 y, we need the inverse of y, i.e., y−1 = 〈25413〉.

Then, z = x	 y = y−1 ◦ x = 〈25341〉. Adding z to the right of y, as expected,

we obtain again x, i.e., y ⊕ z = y ◦ z = 〈12534〉 = x. Now, let a = 0.33 and let500

analyze the computation of a�z. First, a (random) minimal decomposition of z

21

is obtained as follows: RandBS (z) = 〈σ1, σ2, σ4, σ3, σ4, σ2〉, where the σi are the

generators defined as in Section 4.4. From the decomposition it is easy to see

that |z| = 6, thus the computation of 0.33�z simply requires to compose the first

d0.33·6e = 2 generators of z, i.e., 0.33�z = σ1◦σ2 = 〈21345〉◦〈13245〉 = 〈23145〉.505

The case a > 1 is slightly different. Let analyze the computation of 1.5 � z.

First, we need the maximum-weight permutation r = 〈54321〉 (see Section 4.4)

and a (random) minimal decomposition of the difference r 	 z = 〈24315〉, i.e.,

RandBS (r	z) = 〈σ1, σ2, σ3, σ2〉. Exploiting the equivalences D =
(

5
2

)
= 10 and

|z| + |r 	 z| = D, we compute, as expected, |z| = 6. Therefore, 1.5 � z simply510

requires to compose z with the first d1.5 · 6e − 6 = 3 generators of r 	 z, i.e.,

1.5� z = z ◦ σ1 ◦ σ2 ◦ σ3 = 〈53421〉.

5.5. Algebraic Properties

It is easy to prove that the operations⊕,	,� satisfy the following properties:

(i) ⊕ is associative;515

(ii) ⊕ is commutative, if ? is commutative;

(iii) e is the neutral element for ⊕;

(iv) x⊕ x−1 = x−1 ⊕ x = e for each x ∈ X;

(v) 1� x = x for each x ∈ X;

(vi) a� (b� x) = (ab)� x for each x ∈ X and a, b ≥ 0;520

(vii) 0� x = e for each x ∈ X;

(viii) x⊕ (y 	 x) = y for each x, y ∈ X.

The properties (i–viii) make X similar to a vector space over R. Besides

property (ii), the two vector space’s properties that do not hold in general are

the distributivity laws of � with respect to ⊕ and to +.525

6. Algebraic Evolutionary Algorithms

In this section we describe an algebraic method to adapt an evolutionary

algorithm A, originally designed for continuous optimization, to solve a combi-

natorial optimization problem P. The adaptation is possible under the following

22

two conditions: 1) the search space X of P is representable by a finitely gener-530

ated group, and 2) the evolutionary operators of A are linear combinations of

population individuals.

When both conditions are met, the original evolutionary operators, ex-

pressed with the usual numerical vector operations, can be rewritten using ⊕, 	,

and �. The adapted algorithms, called algebraic, directly navigate the combina-535

torial search space by means of the operations defined on the underlying group.

Therefore, algebraic evolutionary algorithms (AEAs) simulate the search moves

of their numerical counterparts in the combinatorial search space at hand.

AEAs can be defined for the most popular and effective numerical evolution-

ary algorithms in literature. Here, we consider the most used ones: Differential540

Evolution (DE) [15] and Particle Swarm Optimization (PSO) [16]. Anyway, the

same technique can be applied also to other evolutionary algorithms like, for in-

stance, Firefly Algorithm [17], Bacterial Foraging Optimization Algorithm [18],

and Artificial Bee Colony [47], and simple univariate Evolution Strategies [48].

In the following we introduce the abstract forms of the algebraic variants545

of DE and PSO, namely, ADE and APSO. By replacing the abstract ⊕, 	, �

with their bit-string or permutation implementations, we have AEAs for, respec-

tively, binary or permutation problems. The precedences among the algebraic

operations are assumed to be as in their numerical counterparts.

6.1. Algebraic Differential Evolution550

In the Algebraic DE (ADE), previously introduced in [8] for permutation

problems, the differential mutation is defined as

yi ← xr0 ⊕ F � (xr1 	 xr2), (11)

which is the algebraic version of equation (1). The recombination between yi

and xi is performed using one of the discrete crossover operators available in

literature (both for bit-strings and permutations). Then, the same one-to-one

selection of numerical DE decides which solution enters the next-generation

population.555

23

Finally, it is worth to note that, though we are limiting our attention to

rand/1, all the known differential mutation variants (rand/2, best/1, current-

to-best/1, etc.) [49] can be replaced with their algebraic counterparts.

6.2. Algebraic Particle Swarm Optimization

In the Algebraic PSO (APSO), preliminary proposed in [10, 50] for permu-

tation problems, the velocity and position update rules of the i-th particle are

defined as:

vi ← [w � vi]⊕ [(c1 · r1i)� (pi 	 xi)]⊕ [(c2 · r2i)� (gi 	 xi)], (12)

xi ← xi ⊕ vi, (13)

which are the algebraic versions of, respectively, equations (2) and (3). The560

personal and social best pi and gi are then updated as in the numerical PSO.

Replacing the velocity vi in equation (13) with the right side of equation

(12), we have that, differently from ADE, the solution xi is updated by adding

three terms to it. Though xi can be reasonably interpreted as a point in the

space, the three terms composing vi have natural interpretations as vectors.565

This generates an ambiguity when ⊕ is not commutative (for instance, in the

permutations space). Hence, in these cases, the three terms of equation (12) are

randomly arranged in one of the 3! = 6 possible orders.

6.3. Search Characteristics of the AEAs

Thanks to the properties of the algebraic framework from which ADE and570

APSO are derived, their search moves are geometrically similar with respect to

the movements performed by their numerical counterparts. Anyway, the discrete

nature of the combinatorial spaces inevitably introduces some differences with

the numerical algorithms.

The main one is the lack of continuity. Indeed, since discrete spaces are575

finite (or at most countable) an individual cannot get infinitesimally closer to

a given solution. Another way of looking at the same issue is that the discrete

24

spaces are graphs (Cayley graphs in our cases), hence the distance between

two solutions is integer-valued. The practical consequence in AEAs, but also

in other combinatorial algorithms, is that loss of population diversity is more580

drastic than in continuous space.

Another difference with numerical algorithms is that when the underlying

group is not Abelian, the ⊕ operation is not commutative. This issue has been

considered in APSO for the permutations space (see Section 6.2).

Furthermore, in the case of bit-strings, both ⊕ and 	 are actually the bit-585

wise XOR operator, hence x ⊕ x = x 	 x = e for all x ∈ Bn. This implies

that, when the population reaches consensus on a bit (i.e., when all individuals

have their i-th bit set to the same value), it is impossible to flip that bit in

the future generations by using movement equations that only consider linear

combinations of population individuals and multiplication by scalars not larger590

than 1. Anyway, note that this aspect is counter-balanced by the fact that

the binary underlying group is Abelian. Indeed, when the composition is com-

mutative, the number of possible minimal decompositions of a generic group

element is intuitively large. Just look at RandBits of Algorithm 1 and observe

that any possible permutation of the 1-bits of the input string corresponds to a595

minimal decomposition sequence. This implies that there are intuitively many

ways of truncating a decomposition sequence, that in turn likely slows down the

convergence to population consensus on a bit.

7. Experimental Analysis

The proposed algebraic EAs (AEAs) have been experimentally analyzed on600

both binary and permutation problems. The benchmarks and the experimental

setup adopted are described in, respectively, Sections 7.1 and 7.2. Algorithm

parameters are tuned as reported in Section 7.3, while different experimental

scenarios have been considered. A first set of experiments is described in Section

7.4, where standalone versions of the AEAs are compared with the standalone605

decoder-based numerical EAs described in Sections 2.3, 2.4, and 2.5. Then,

25

Section 7.5 describes a second set of experiments designed to compare enhanced

versions of both classes of algorithms. Lastly, in Section 7.6, the best AEAs

results are compared to the state-of-the-art results in literature for the tackled

problems.610

7.1. Benchmarks

Benchmark problems and instances have been selected for both the binary

and permutation cases. Due to their generality, NK Landscapes (NKL) [19] have

been considered as binary benchmarks, while, for permutation problems, the

experiments have been held on the Permutation Flowshop Scheduling Problem615

(PFSP) with the total flowtime as objective function [20] and on the Linear

Ordering Problem (LOP) [21].

An NKL instance of n bits and epistasis K is provided as n tabulated sub-

functions fi : BK+1 → R, with i ∈ {1, . . . , n}, each one defined on K + 1 bits of

an n-length bit-string including its i-th bit. The objective is to maximize the620

sum of the sub-function values.

A PFSP instance consists of n jobs, m machines, and a processing time

pi,j for every job i ∈ {1, . . . , n} in every machine j ∈ {1, . . . ,m}. Given a

permutation of jobs π ∈ Sn, the completion time of job π(i) in machine j

is recursively computed as cπ(i),j = pπ(i),j + max{cπ(i−1),j , cπ(i),j−1} by also625

considering the terminal cases ci,0 = c0,j = 0. The total flowtime objective

requires to minimize f(π) =
∑n
i=1 cπ(i),m.

A LOP instance is provided as an n × n matrix H and the objective is to

find a permutation π ∈ Sn which maximizes f(π) =
∑n
i=1

∑n
j=i+1Hπ(i),π(j).

Sixty instances for each one of the three problems have been selected from630

widely adopted benchmark suites as follows.

• NKL instances come from the combinatorial black-box optimization con-

test organized at GECCO 20152, where they have been randomly gener-

ated using different dimensionalities and epistasis values.

2http://web.mst.edu/~tauritzd/CBBOC/GECCO2015.

26

• PFSP instances are taken from the Taillard benchmark suite3 and, as635

explained in [51], they are the most difficult instances (basing on few

algorithms chosen by the author) among a randomly generated set of

instances.

• LOP instances are from the benchmark sets LOLIB, SGB and MB4:

LOLIB is a real-world dataset of input-output tables used in economics,640

while SGB and MB are randomly generated instances with different di-

mensionalities and levels of sparsity.

Finally, note that the subset of 60 × 3 = 180 instances used in our work has

been selected from these datasets by uniformly covering their inner characteris-

tics. For the sake of space, the names of the selected instances are provided as645

supplementary material on the web [52].

7.2. Setup of the experiments

ADE and APSO have, each one, two implementations: for the binary and

permutation space, thus we have a total of four algebraic algorithms. Both in

the standalone and enhanced comparison scenarios (see Sections 7.4 and 7.5),650

ADE and APSO have been compared with the decoder-based numerical EAs

described in Sections 2.3, 2.4 and 2.5. Therefore, six binary algorithms have

been compared on the NKL instances, while four algorithms for permutation

problems have been analyzed on PFSP and LOP instances. We use the same

acronyms defined in Section 2 and, for the sake of presentation, we report them655

in Table 1.

All the PSO-based schemes adopt the ring topology. With regards to the

DE-based algorithms, the standard binomial crossover of classical DE is used

without any modification on the binary problems, while the OBX crossover [9]

is adopted for the permutation problems. Indeed, OBX can be regarded as a660

3http://mistic.heig-vd.ch/taillard.
4http://www.optsicom.es/lolib.

27

Table 1: Acronyms of the algorithms compared in the experimentation

Search space Problems
Algorithms Algorithms

Acronyms Descriptions

Binary NKL ADE Algebraic DE for the binary space

APSO Algebraic PSO for the binary space

BDE [32] Binary DE (see Section 2.3)

BPSO [7] Binary PSO (see Section 2.3)

AM-DE [2] Angle Modulated DE (see Section 2.4)

AM-PSO [37] Angle Modulated PSO (see Section 2.4)

Permutation PFSP ADE Algebraic DE for the permutation space

LOP APSO Algebraic PSO for the permutation space

RK-DE [31] Random-key DE (see Section 2.5)

RK-PSO [3] Random-key PSO (see Section 2.5)

simple feasible variant of the binomial crossover for the permutation represen-

tation.

For every instance, all the algorithms have been executed 20 times using,

as termination criteria, both a given budget of fitness evaluations and of com-

putational time. The final fitness values produced by the executions of every

algorithm have been aggregated for each instance using the Average Relative

Percentage Deviation (ARPD) measure, which is computed according to

ARPDAlg
Inst =

1

20

20∑
i=1

∣∣∣Alg
(i)
Inst − BestInst

∣∣∣
BestInst

× 100, (14)

where Alg
(i)
Inst is the final fitness value produced by the algorithm Alg in its i-th

run on the instance Inst, while BestInst is the best result obtained on the given

instance by any algorithm in any run of the considered experiment. The ARPDs665

have to be minimized both for maximization and minimization problems. Sta-

tistical analyses have been conducted by means of the well known Wilcoxon

signed-rank test [53].

Finally, a state-of-the-art comparison has been carried out by comparing the

best objective values obtained by the algebraic algorithms with the best known670

28

solutions so far of every benchmark instance (see Section 7.6).

7.3. Tuning of the parameters

Due to the different characteristics of the search spaces navigated by the

algebraic and decoder-based algorithms, in order to perform a fair comparison,

the parameters of the algorithms have been separately tuned using SMAC [54],675

i.e., a popular tool for automatic algorithm configuration based on statistical and

machine learning techniques. To avoid the over-tuning phenomenon [55], SMAC

calibrations have been run using a separate set of instances with respect to those

used for algorithm comparisons. The list of the 30 selected calibration instances

for each problem class is provided as supplementary material on the web [52].680

Every SMAC calibration has been set to run for 72 hours of computational time,

while every algorithm execution terminates after 100n2 fitness evaluations have

been performed. The ranges of the parameters in input to SMAC are as follows:

N ∈ {20, 60, 100}; F,CR ∈ [0, 1] for DE schemes; w ∈ [0, 1] and c1, c2 ∈ [0, 2] for

PSO schemes; b ∈ [20, 100] for BDE; k ∈ {−1, 1} for the random-key schemes.685

The tuned parameter settings resulting from the SMAC executions are provided

in Table 2.

As expected, the different morphologies of the search landscapes are reflected

on the noticeable differences among the calibrated parameter values.

7.4. Standalone Algorithms Comparison690

The aim of this section is to verify if our proposals are competitive with

respect to the decoder-based variants of DE and PSO. Therefore, in this set of

experiments all the algorithms have been implemented in their basic versions as

depicted by Sections 2 and 6.

The algorithms comparison has been performed by using the calibrated set-695

tings of Table 2 and considering two termination criteria: 100n2 fitness eval-

uations (as in calibration), and 50n2 milliseconds of computational time. The

second criterion is motivated by the inherently different computational com-

plexities of the algebraic and decoder-based algorithms.

29

Table 2: Calibred settings obtained with SMAC

Problem Algorithm Parameter Settings

NKL

ADE N = 100, F = 0.22, CR = 0.22

BDE [32] N = 100, F = 0.78, CR = 0.65, b = 98.77

AM-DE [2] N = 60, F = 0.12, CR = 0.32

APSO N = 100, w = 0.04, c1 = 0.58, c2 = 1.7

BPSO [7] N = 20, w = 0.79, c1 = 1.64, c2 = 1.33

AM-PSO [37] N = 20, w = 0.73, c1 = 1.77, c2 = 1.44

PFSP

ADE N = 100, F = 0.13, CR = 0.65

RK-DE [31] N = 100, F = 0.4, CR = 0.95, k = 1

APSO N = 20, w = 4 · 10−5, c1 = 1.4, c2 = 1.05

RK-PSO [3] N = 100, w = 0.8, c1 = 1.78, c2 = 1.76, k = −1

LOP

ADE N = 100, F = 0.05, CR = 0.42

RK-DE [31] N = 60, F = 0.9, CR = 0.95, k = 1

APSO N = 60, w = 0.003, c1 = 1.74, c2 = 1.09

RK-PSO [3] N = 100, w = 0.8, c1 = 1.73, c2 = 1.64, k = −1

The results of the executions are presented in aggregated form in Tables 3,700

4, and 5, respectively, for NKL, PFSP, and LOP instances. For each algorithm

and for both termination criteria, any of such tables provides four performance

measures: 1) the overall ARPD, 2) the non-parametric average rank (of the

algorithm’s ARPDs), 3) the intra-class success rate defined as the number of

instances where the algorithm obtained the best ARPD compared to the same-705

class competitors5, and 4) the p-value of the Wilcoxon test with respect to the

best performing competitor in the same algorithmic class.

The results clearly show that the algebraic algorithms outperform the decoder-

based approaches with very high statistical evidence in every problem and con-

sidering both termination criteria. In general, the algebraic DE is the best710

5This is not the standard definition of success rate, i.e., the frequency with which the

best known solution has been obtained in n trials. Note anyway that, since our intra-class

success rate consider the ARPD values, it takes implicitly into account also the multiple trials

performed by the algorithm.

30

Table 3: Experimental results of standalone algorithms on NKL

Termination Performance
ADE BDE [32] AM-DE [2] APSO BPSO [7] AM-PSO [37]

Criterion Measure

Overall ARPD 0.29 12.32 12.83 0.79 6.85 12.31

Evaluations Avg Rank 1.25 4.59 5.88 1.84 2.91 4.53

Budget Success Rate 60/60 0/60 0/60 56/60 4/60 0/60

p-value best < 10−10 < 10−10 best < 10−10 < 10−10

Overall ARPD 0.25 12.40 12.90 0.43 6.93 12.39

Time Avg Rank 1.39 4.58 5.88 1.62 2.99 4.54

Budget Success Rate 60/60 0/60 0/60 60/60 0/60 0/60

p-value best < 10−10 < 10−10 best < 10−10 < 10−10

Table 4: Experimental results of standalone algorithms on PFSP

Termination Performance
ADE RK-DE [31] APSO RK-PSO [3]

Criterion Measure

Overall ARPD 0.62 13.72 5.78 6.58

Evaluations Avg Rank 1.00 4.00 2.10 2.90

Budget Success Rate 60/60 0/60 54/60 6/60

p-value best < 10−10 best < 10−8

Overall ARPD 0.38 11.72 4.59 4.83

Time Avg Rank 1.00 4.00 2.31 2.69

Budget Success Rate 60/60 0/60 42/60 18/60

p-value best < 10−10 best 0.006

Table 5: Experimental results of standalone algorithms on LOP

Termination Performance
ADE RK-DE [31] APSO RK-PSO [3]

Condition Measure

Overall ARPD 0.14 19.40 3.52 4.11

Evaluations Avg Rank 1.00 4.00 2.17 2.83

Budget Success Rate 60/60 0/60 50/60 10/60

p-value best < 10−10 best < 10−9

Overall ARPD 0.08 16.93 2.95 3.12

Time Avg Rank 1.00 4.00 2.28 2.72

Budget Success Rate 60/60 0/60 42/60 18/60

p-value best < 10−10 best < 10−3

31

scheme in every problem. Indeed, ADE obtained 1 as average rank both for

PFSP and LOP experiments, meaning that ADE has obtained the best ARPD

on every single PFSP and LOP instance. Moreover, in the binary NKL in-

stances, though ADE is anyway the best algorithm in average, APSO reached

quite comparable results.715

In order to analyze the convergence behaviors, Figure 2 presents the con-

vergence graphs obtained by the median execution of every algorithm in three

benchmark instances, one per problem. The data provided are typical data

which have been observed also in other executions and benchmark instances.

The graphs show behavior of the objective value – of the best solution in the720

population – with respect to to the number of evaluations performed so far.

Since the PFSP is the only minimization problem, for the sake of homogeneity,

we present the opposite objective values.

0
20000

40000
60000

80000
100000

Evaluations

76

78

80

82

84

86

88

90

92

Ob
j.

Va
lu

e

ADE
APSO
BDE
BPSO
AM-DE
AM-PSO

(a) NKL (p2/00000.txt)

0
200

00
400

00
600

00
800

00
100

000

Evaluations

−310000

−300000

−290000

−280000

−270000

−260000

Ob
j.

Va
lu

e

ADE
APSO
RK-DE
RK-PSO

(b) PFSP (tai 100 5 0)

0
200

00
400

00
600

00
800

00
100

000

Evaluations

1300000

1400000

1500000

1600000

1700000

1800000

1900000

2000000

Ob
j.
Va

lu
e

ADE
APSO
RK-DE
RK-PSO

(c) LOP (IO/N-usa79)

Figure 2: Convergence graphs in three selected instances of the algorithms ADE, APSO, BDE

[32], BPSO [7], AM-DE [2], AM-PSO [37], RK-DE [31], RK-PSO [3].

The most interesting observation which follows from these graphs is that,

in general, most of the decoder-based schemes seem to converge earlier than725

algebraic algorithms. One only exception looks to be RK-PSO, in particular

in the LOP benchmark. This premature convergence looks to be a plausible

explanation of the different performances among the schemes.

Finally, we refer the interested reader to the supplementary material [52] for

the full details of the experimental results.730

32

7.5. Enhanced Algorithms Comparison

In order to provide a more complete analysis, additional experiments have

been held with the aim of comparing enhanced versions of the AEAs and

decoder-based schemes. The algorithms from both classes have been equipped

with four additional components commonly employed in literature to improve735

the performance of an evolutionary algorithm: a heuristic initialization, a restart

mechanism, a local search procedure, and a self-adaptive strategy for the algo-

rithms’ parameters.

The heuristic initialization works by generating one initial solution by means

of a heuristic procedure purposely defined for the problem at hand, while the740

remaining N − 1 individuals are randomly generated. For PFSP and LOP, we

have adopted very popular and effective constructive procedures: respectively,

the Liu-Reeves [56] and best-insertion [57] heuristics. For NK landscapes, as far

as we know, there is no heuristic available in literature, thus we have designed

a simple procedure: randomly generate n(K + 1) bit-strings and select the745

best one. Though being very simple, we have experimentally observed that it

guarantees a good starting point for the algorithms.

Restarts are triggered when the best population solution has not been im-

proved during the last T generations. After some preliminary experiments, T

has been set to 1000. In the DE-based schemes, as done for example in [8],750

the restart randomizes all the solutions except the best one, while in the PSO-

based schemes we have adopted the restart strategy described in [58], i.e., all

the personal best solutions are randomized except for the global best particle

that randomizes its velocity.

As suggested in [59], in every generation, local search is applied to every755

solution with probability 1/N . Hence, in average, one solution per generation

undergoes local search. Additionally, in order to refine the search as much as

possible, we apply the local search also to the best solution after every restart

and at the end of the evolution. A complete best-improvement local search

procedure has been employed. The bit-flip neighborhood has been used in NKL760

instances, while for PFSP and LOP, the commonly used neighborhood based

33

on item’s insertion moves has been considered [45].

In order to automatically calibrate the parameters during the evolution we

have used two popular self-adaptive mechanisms: the jDE scheme for the DE-

based algorithms [60], and the self-adaptive PSO scheme introduced in [61].765

Both schemes extend each population individual with a personal copy of the

parameters which are evolved similarly to the genotype solution. Therefore, no

parameter setting is required except for the population size N and the random-

key parameter k that have been set as in Table 2.

The enhanced algorithms are denoted as: ADE+, APSO+, BDE+, BPSO+,770

AM-DE+, AM-PSO+, RK-DE+, and RK-PSO+. Note also that, both in the

heuristic initialization and after any application of the local search, the random-

key and the angle modulated schemes require to encode the obtained discrete

solution to a numerical vector. For random-key schemes, this is done by normal-

izing the permutation to a numerical vector such that any dimension is within775

the allowed numerical bounds. However, as far as we know, there is no known

method to invert the AM decoder of equation (4), therefore, AM-DE+ and

AM-PSO+ actually do not use heuristic initialization and adopt a Baldwinian

local search, i.e., the (hopefully) improved solution is recorded but does not

enter the population. Moreover, BPSO+ has been further improved by setting780

vmax = ln(n− 1), as suggested in [62].

Experiments have been held using the set of selected instances, every algo-

rithm has been executed 20 times per instance, and each execution terminates

after 10 consecutive restarts without improvement of the best solution or after

10 minutes of computational time. The aggregated experimental results are785

presented in Tables 6, 7, and 8 for, respectively, the NKL, PFSP and LOP

benchmarks. The same layout described in Section 7.4 is used.

The results clearly show that the AEAs outperform the decoder-based ap-

proaches in every problem also when both classes of algorithms are enhanced

with additional algorithmic components. Indeed, as in the previous experi-790

ments, the reported p-values largely indicate that all the comparisons have very

high significance, thus definitely validating our proposals with respect to the

34

Table 6: Experimental results of enhanced algorithms on NKL

Performance
ADE+ BDE+ [32] AM-DE+ [2] APSO+ BPSO+ [7] AM-PSO+ [37]

Measure

Overall ARPD 0.16 12.85 13.68 0.25 1.29 4.15

Avg Rank 1.32 6.00 4.00 1.78 5.00 2.90

Success Rate 60/60 0/60 0/60 60/60 3/60 0/60

p-value best < 10−10 < 10−10 best < 10−10 < 10−10

Table 7: Experimental results of enhanced algorithms on PFSP

Performance
ADE+ RK-DE+ [31] APSO+ RK-PSO+ [3]

Measure

Overall ARPD 0.42 1.06 0.59 0.92

Avg Rank 1.48 3.13 2.45 2.93

Success Rate 49/60 11/60 41/60 19/60

p-value best < 10−7 best < 10−5

Table 8: Experimental results of enhanced algorithms on LOP

Performance
ADE+ RK-DE+ [31] APSO+ RK-PSO+ [3]

Measure

Overall ARPD 0.01 0.29 0.20 0.24

Avg Rank 1.22 3.10 2.58 3.10

Success Rate 57/60 4/60 41/60 20/60

p-value best < 10−9 best 0.018

35

decoder-based competitors.

In general, all algorithms, apart few exceptions (BDE+, AM-DE+, AM-

PSO+ in NKL instances), decrease their overall ARPDs with respect to the795

experiments of Section 7.4. This is a consequence of the additional algorithmic

components which tend to reduce performance differences among multiple runs

of the same algorithms. In a few instances, the decoder-based approaches have

been able to reach the ARPDs of the algebraic algorithms. This is shown by the

non-zero success rates obtained by BPSO+ in the NKL instances, and by RK-800

DE+ and RK-PSO+ in both the PFSP and LOP instances. However, also the

AEAs have consistently improved their overall ARPDs: the best one is 0.01%

(ADE+ in the LOP problem), while the worst one is only 0.59% (APSO+ in

the PFSP problem). Finally, it is worth to note that, as in the previous set

of experiments, ADE+ is clearly the best algorithm, though APSO+ reaches a805

quite comparable average rank on NKL instances.

Finally, we refer the interested reader to the supplementary material [52] for

the full details of the experimental results.

7.6. Comparison with State-of-the-art Results

Though the algebraic algorithms clearly outperform the decoder-based ap-810

proaches, the previous experiments say nothing about the general performances

of AEAs with respect to pure combinatorial algorithms. Therefore, in this sec-

tion we compare the AEAs performances with respect to the state-of-the-art

results on the tackled problems.

The analysis has been conducted by comparing, on every instance, the best815

objective function values obtained by both ADE+ and APSO+ with respect to

the best known solutions available in literature. In particular, these latter have

been obtained from: the CBBOC website for NKL (see footnote 2), the LOLIB

website for LOP (see footnote 4), and from [8, Table III] for PFSP. With this

regard, it is important to stress out that the best known solutions have been820

obtained by a variety of different algorithms, often purposely designed for the

problem at hand. We think that this comparison is much more explanatory and

36

comprehensive than comparing the AEAs with a bunch of chosen algorithms.

Both for ADE+ and APSO+, the analysis is summarized by the indices

provided in Table 9 where, aggregated over the instances of every problem, it is825

reported: the average, maximum and minimum percentage improvement with

respect to the best known solution (BKS) together with the number of BKSs

that have been matched or improved by our proposals.

Table 9: Comparison with state-of-the-art results

Performance NKL Instances PFSP Instances LOP Instances

Measure ADE+ APSO+ ADE+ APSO+ ADE+ APSO+

Avg Improvement +2.06% +2.05% −0.60% −0.93% −0.0005% −0.02%

Max Improvement +10.96% +10.85% 0.00% 0.00% 0.00% 0.00%

Min Improvement 0.00% 0.00% −2.54% −2.85% −0.03% −0.19%

BKSs reached 60/60 60/60 20/60 20/60 58/60 31/60

BKSs improved 46/60 46/60 0/60 0/60 0/60 0/60

In the NK landscapes, all the best known solutions have been improved

(46 cases), or at least reached (14 cases), by both ADE+ and APSO+. Though830

these instances have been only investigated during the CBBOC competition, the

results are anyway interesting since they clearly show that algebraic algorithms

are competitive on binary problems.

In the selected LOP instances, it is worth to note that the best known

solutions have been proven to be optimal [21]. Hence, Table 9 shows that ADE+
835

has been able to reach the optimum in almost the totality of the instances while

its average deviation from the optimum, though negative, is almost negligible.

Moreover, the worst deviation obtained by APSO+ is only 0.19%.

For PFSP, though both of our proposals have matched the state-of-the-

art results in the 20 smaller instances, the average deviations from the best840

known solutions are slightly larger than in LOP, but they are anyway not greater

than 1%.

In conclusion, this analysis shows that the algebraic framework here proposed

is quite general and effective also from a practical point of view.

37

8. Conclusion and Future Work845

The main contribution of this work is the general algebraic framework by

which it is possible to adapt a large class of numerical evolutionary algorithms

to tackle an important class of combinatorial optimization problems.

The framework has been abstractly described by means of the algebraic

properties of finitely generated groups, while concrete implementations are pro-850

vided for binary and permutation search spaces. Discrete vector operations have

been proposed in such a way that their geometric interpretations are consistent

throughout the different spaces and with respect to their numerical counter-

parts.

The algebraic variants of two popular algorithms have been proposed: Alge-855

braic Differential Evolution (ADE) and Algebraic Particle Swarm Optimization

(APSO).

These algorithms have been implemented and compared with six algorithms

in literature which use the decoder-based schemes, i.e., classical numerical algo-

rithms endowed with decoding procedures that convert continuous individuals860

to discrete solutions. To the best of our knowledge, this is the only technique in

literature that guarantees a level of applicability comparable to our framework.

Experiments have been held both on binary and permutation problems by

considering two scenarios: standalone and enhanced implementations of the al-

gorithms. The experimental results show that the algebraic algorithms clearly865

outperform the competitors in both scenarios. Importantly, a further compari-

son with state-of-the-art results in literature shows that our proposals are also

competitive with pure combinatorial algorithms. These empirical results, to-

gether with the strong mathematical foundations over which our proposal is

built, allow us to suggest our framework in the design of new algorithms for870

combinatorial optimization problems.

A future research of direction is to apply the proposed framework to other

search spaces such as, for instance, the space of integer vectors. Moreover, since

the Cartesian product of search spaces representable as groups form itself a

38

group (the so-called product group), we are also planning to expand the appli-875

cations of the framework to more complex search spaces that are usually tackled

by means of co-evolutionary algorithms. Another research direction is to pro-

pose algebraic variants for other numerical algorithms like, for example, Firefly

Algorithm or Bacterial Foraging Optimization scheme. Finally, it is interesting

to study the potentialities of the framework in order to provide a new perspec-880

tive in the theoretical analysis of combinatorial meta-heuristics. Preliminary

investigations in some of these directions are presented in [63, 64].

References

[1] S. Mirjalili, A. Lewis, S-shaped versus V-shaped transfer functions for bi-

nary Particle Swarm Optimization, Swarm and Evolutionary Computation885

9 (2013) 1–14.

[2] G. Pampara, A. P. Engelbrecht, N. Franken, Binary Differential Evolution,

in: Proc. of 2006 IEEE International Conference on Evolutionary Compu-

tation (CEC 2006), 2006, pp. 1873–1879.

[3] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, G. Gencyilmaz, A particle swarm890

optimization algorithm for makespan and total flowtime minimization in

the permutation flowshop sequencing problem, European Journal of Oper-

ational Research 177 (3) (2007) 1930–1947.

[4] M. K. Marichelvam, T. Prabaharan, X. S. Yang, A Discrete Firefly Al-

gorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems,895

IEEE Transactions on Evolutionary Computation 18 (2) (2014) 301–305.

[5] M. Ayodele, J. A. W. McCall, O. Regnier-Coudert, RK-EDA: A Novel

Random Key Based Estimation of Distribution Algorithm, in: Proc. of

14th International Conference on Parallel Problem Solving from Nature

(PPSN XIV), 2016, pp. 849–858.900

[6] J. C. Bean, Genetic Algorithms and Random Keys for Sequencing and

Optimization, ORSA Journal on Computing 6 (2) (1994) 154–160.

39

[7] J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm

algorithm, in: Proc. of 1997 IEEE International Conference on Systems,

Man, and Cybernetics (SMC 1997), Vol. 5, 1997, pp. 4104–4108.905

[8] V. Santucci, M. Baioletti, A. Milani, Algebraic Differential Evolution Algo-

rithm for the Permutation Flowshop Scheduling Problem With Total Flow-

time Criterion, IEEE Transactions on Evolutionary Computation 20 (5)

(2016) 682–694. doi:10.1109/TEVC.2015.2507785.

[9] M. Baioletti, A. Milani, V. Santucci, An Extension of Algebraic Dif-910

ferential Evolution for the Linear Ordering Problem with Cumulative

Costs, in: Proc. of 14th International Conference on Parallel Problem

Solving from Nature (PPSN XIV), 2016, pp. 123–133. doi:10.1007/

978-3-319-45823-6_12.

[10] M. Baioletti, A. Milani, V. Santucci, Algebraic particle swarm optimization915

for the permutations search space, in: Proc. of 2017 IEEE Congress on

Evolutionary Computation (CEC 2017), 2017, pp. 1587–1594. doi:10.

1109/CEC.2017.7969492.

[11] M. Baioletti, A. Milani, V. Santucci, MOEA/DEP: An Algebraic

Decomposition-Based Evolutionary Algorithm for the Multiobjective Per-920

mutation Flowshop Scheduling Problem, in: Evolutionary Computa-

tion in Combinatorial Optimization, 2018, pp. 132–145. doi:10.1007/

978-3-319-77449-7_9.

[12] V. Santucci, M. Baioletti, G. Di Bari, A. Milani, A Binary Algebraic Differ-

ential Evolution for the MultiDimensional Two-Way Number Partitioning925

Problem, in: Evolutionary Computation in Combinatorial Optimization,

2019, pp. 17–32. doi:10.1007/978-3-030-16711-0_2.

[13] M. Baioletti, A. Milani, V. Santucci, Variable neighborhood algebraic

Differential Evolution: An application to the Linear Ordering Problem

with Cumulative Costs, Information Sciences 507 (2020) 37–52. doi:930

10.1016/j.ins.2019.08.016.

40

http://dx.doi.org/10.1109/TEVC.2015.2507785
http://dx.doi.org/10.1007/978-3-319-45823-6_12
http://dx.doi.org/10.1007/978-3-319-45823-6_12
http://dx.doi.org/10.1007/978-3-319-45823-6_12
http://dx.doi.org/10.1109/CEC.2017.7969492
http://dx.doi.org/10.1109/CEC.2017.7969492
http://dx.doi.org/10.1109/CEC.2017.7969492
http://dx.doi.org/10.1007/978-3-319-77449-7_9
http://dx.doi.org/10.1007/978-3-319-77449-7_9
http://dx.doi.org/10.1007/978-3-319-77449-7_9
http://dx.doi.org/10.1007/978-3-030-16711-0_2
http://dx.doi.org/10.1016/j.ins.2019.08.016
http://dx.doi.org/10.1016/j.ins.2019.08.016
http://dx.doi.org/10.1016/j.ins.2019.08.016

[14] H. H. Hoos, T. Stützle, Stochastic local search: Foundations & applications,

Elsevier, 2004.

[15] R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic

for global Optimization over Continuous Spaces, Journal of Global Opti-935

mization 11 (4) (1997) 341–359.

[16] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. of IEEE

International Conference on Neural Networks, Vol. 4, 1995, pp. 1942–1948.

[17] X.-S. Yang, Firefly algorithms for multimodal optimization, in: Proc. of 5th

International Symposium on Stochastic Algorithms, 2009, pp. 169–178.940

[18] S. Das, A. Biswas, S. Dasgupta, A. Abraham, Bacterial foraging optimiza-

tion algorithm: theoretical foundations, analysis, and applications, Foun-

dations of Computational Intelligence 3 (2009) 23–55.

[19] S. A. Kauffman, E. D. Weinberger, The NK model of rugged fitness land-

scapes and its application to maturation of the immune response, Journal945

of Theoretical Biology 141 (2) (1989) 211–245.

[20] R. Ruiz, C. Maroto, A comprehensive review and evaluation of permuta-

tion flowshop heuristics, European Journal of Operational Research 165 (2)

(2005) 479–494.

[21] T. Schiavinotto, T. Stützle, The Linear Ordering Problem: Instances,950

Search Space Analysis and Algorithms, Journal of Mathematical Modelling

and Algorithms 3 (4) (2004) 367–402.

[22] A. Milani, V. Santucci, Asynchronous differential evolution, in: Proc. of

2010 IEEE Congress on Evolutionary Computation (CEC 2010), 2010, pp.

1–7. doi:10.1109/CEC.2010.5586107.955

[23] Q. Guo, L. Tang, Modelling and discrete differential evolution algorithm

for order rescheduling problem in steel industry, Computers & Industrial

Engineering 130 (2019) 586 – 596.

41

http://dx.doi.org/10.1109/CEC.2010.5586107

[24] G. Zhang, K. Xing, F. Cao, Discrete differential evolution algorithm for

distributed blocking flowshop scheduling with makespan criterion, Engi-960

neering Applications of Artificial Intelligence 76 (2018) 96–107.

[25] J. Bock, J. Hettenhausen, Discrete particle swarm optimisation for ontology

alignment, Information Sciences 192 (2012) 152–173.

[26] M. F. Tasgetiren, P. Suganthan, Q.-K. Pan, An ensemble of discrete differ-

ential evolution algorithms for solving the generalized traveling salesman965

problem, Applied Mathematics and Computation 215 (9) (2010) 3356–3368.

[27] W. Chen, J. Zhang, H. S. Chung, W. Zhong, W. Wu, Y. Shi, A Novel

Set-Based Particle Swarm Optimization Method for Discrete Optimiza-

tion Problems, IEEE Transactions Evolutionary Computation 14 (2) (2010)

278–300.970

[28] Y. Liu, W. Chen, Z. Zhan, Y. Lin, Y. Gong, J. Zhang, A Set-Based Discrete

Differential Evolution Algorithm, in: Proc. of 2013 IEEE International

Conference on Systems, Man, and Cybernetics, Manchester (SMC 2013),

2013, pp. 1347–1352.

[29] M. Clerc, Discrete particle swarm optimization, illustrated by the travel-975

ing sales-man problem, in: New Optimization Techniques in Engineering,

Studies in Fuzziness and Soft Computing, 2004, pp. 219–239.

[30] A. Moraglio, J. Togelius, S. Silva, Geometric Differential Evolution for

Combinatorial and Programs Spaces, Evolutionary Computation 21 (4)

(2013) 591–624.980

[31] X. Li, M. Yin, An opposition-based differential evolution algorithm for

permutation flow shop scheduling based on diversity measure, Advances in

Engineering Software 55 (2013) 10–31.

[32] L. Wang, X. Fu, Y. Mao, M. I. Menhas, M. Fei, A novel modified binary

differential evolution algorithm and its applications, Neurocomputing 98985

(2012) 55–75.

42

[33] M. F. Taşgetiren, Y.-C. Liang, A binary particle swarm optimization al-

gorithm for lot sizing problem, Journal of Economic and Social Research

5 (2) (2003) 1–20.

[34] S. Pookpunt, W. Ongsakul, Optimal placement of wind turbines within990

wind farm using binary particle swarm optimization with time-varying ac-

celeration coefficients, Renewable Energy 55 (2013) 266–276.

[35] L.-Y. Chuang, C.-H. Yang, J.-C. Li, Chaotic maps based on binary particle

swarm optimization for feature selection, Applied Soft Computing 11 (1)

(2011) 239–248.995

[36] I. Babaoglu, O. Findik, E. Ulker, A comparison of feature selection mod-

els utilizing binary particle swarm optimization and genetic algorithm in

determining coronary artery disease using support vector machine, Expert

Systems with Applications 37 (4) (2010) 3177 – 3183.

[37] G. Pampara, N. Franken, A. P. Engelbrecht, Combining particle swarm1000

optimisation with angle modulation to solve binary problems, in: Proc. of

2005 IEEE Congress on Evolutionary Computation (CEC 2005), Vol. 1,

2005, pp. 89–96.

[38] L. Liu, W. Liu, D. A. Cartes, I.-Y. Chung, Slow coherency and angle mod-

ulated particle swarm optimization based islanding of large-scale power1005

systems, Advanced Engineering Informatics 23 (1) (2009) 45 – 56.

[39] B. J. Leonard, A. P. Engelbrecht, Angle Modulated Particle Swarm Vari-

ants, in: Proc. of 9th International Conference on Swarm Intelligence

(ANTS 2014), 2014, pp. 38–49.

[40] H. Gao, S. Kwong, B. Fan, R. Wang, A hybrid particle-swarm tabu search1010

algorithm for solving job shop scheduling problems, IEEE Transactions on

Industrial Informatics 10 (4) (2014) 2044–2054.

43

[41] E. Cao, M. Lai, H. Yang, Open vehicle routing problem with demand un-

certainty and its robust strategies, Expert Systems with Applications 41 (7)

(2014) 3569–3575.1015

[42] T. J. Ai, V. Kachitvichyanukul, A particle swarm optimization for the

vehicle routing problem with simultaneous pickup and delivery, Computers

& Operations Research 36 (5) (2009) 1693–1702.

[43] G. Koulinas, L. Kotsikas, K. Anagnostopoulos, A particle swarm optimiza-

tion based hyper-heuristic algorithm for the classic resource constrained1020

project scheduling problem, Information Sciences 277 (2014) 680–693.

[44] S. Lang, Algebra, Vol. 211, Springer, 2002.

[45] T. Schiavinotto, T. Stützle, A review of metrics on permutations for search

landscape analysis, Computers & Operations Research 34 (10) (2007) 3143–

3153.1025

[46] J. Scharnow, K. Tinnefeld, I. Wegener, The analysis of evolutionary algo-

rithms on sorting and shortest paths problems, Journal of Mathematical

Modelling and Algorithms 3 (4) (2005) 349–366.

[47] D. Karaboga, B. Akay, A comparative study of artificial bee colony algo-

rithm, Applied mathematics and computation 214 (1) (2009) 108–132.1030

[48] H.-G. Beyer, H.-P. Schwefel, Evolution strategies – A comprehensive intro-

duction, Natural Computing 1 (1) (2002) 3–52.

[49] K. Price, R. M. Storn, J. A. Lampinen, Differential evolution: a practical

approach to global optimization, Springer Science & Business Media, 2006.

[50] V. Santucci, M. Baioletti, A. Milani, Tackling Permutation-based Opti-1035

mization Problems with an Algebraic Particle Swarm Optimization Algo-

rithm, Fundamenta Informaticae 167 (1-2) (2019) 133–158. doi:10.3233/

FI-2019-1812.

44

http://dx.doi.org/10.3233/FI-2019-1812
http://dx.doi.org/10.3233/FI-2019-1812
http://dx.doi.org/10.3233/FI-2019-1812

[51] E. Taillard, Benchmarks for basic scheduling problems, European Journal

of Operational Research 64 (2) (1993) 278 – 285.1040

[52] V. Santucci, M. Baioletti, A. Milani, Supplementary material for ”An Alge-

braic Framework for Evolutionary Algorithms in Combinatorial Optimiza-

tion”.

URL https://bit.ly/2RL3MMC

[53] J. Derrac, S. Garćıa, D. Molina, F. Herrera, A practical tutorial on the use1045

of nonparametric statistical tests as a methodology for comparing evolu-

tionary and swarm intelligence algorithms, Swarm and Evolutionary Com-

putation 1 (1) (2011) 3–18.

[54] F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential model-based opti-

mization for general algorithm configuration, in: Proc. of Learning and1050

Intelligent Optimization Conference (LION 5), 2011, pp. 507–523.

[55] M. Birattari, Tuning Metaheuristics: A Machine Learning Perspective,

Springer, 2009.

[56] J. Liu, C. R. Reeves, Constructive and composite heuristic solutions to the

p//
∑
ci scheduling problem, European Journal of Operational Research1055

132 (2) (2001) 439–452.

[57] R. Mart́ı, G. Reinelt, The linear ordering problem: exact and heuristic

methods in combinatorial optimization, Springer Science & Business Media,

2011.

[58] J. Zhang, X. Zhu, W. Wang, J. Yao, A fast restarting particle swarm1060

optimizer, in: Proc. of 2014 IEEE Congress on Evolutionary Computation

(CEC 2014), 2014, pp. 1351–1358.

[59] Q. Duan, T. Liao, H. Yi, A comparative study of different local search

application strategies in hybrid metaheuristics, Applied Soft Computing

13 (3) (2013) 1464 – 1477.1065

45

https://bit.ly/2RL3MMC
https://bit.ly/2RL3MMC
https://bit.ly/2RL3MMC
https://bit.ly/2RL3MMC
https://bit.ly/2RL3MMC
https://bit.ly/2RL3MMC

[60] J. Brest, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control parame-

ters in differential evolution: A comparative study on numerical benchmark

problems, IEEE Transactions on Evolutionary Computation 10 (6) (2006)

646–657.

[61] A. Ismail, A. P. Engelbrecht, The self-adaptive comprehensive learning1070

particle swarm optimizer, in: Proc. of 8th International Conference on

Swarm Intelligence (ANTS 2012), 2012, pp. 156–167.

[62] D. Sudholt, C. Witt, Runtime analysis of a binary particle swarm optimizer,

Theoretical Computer Science 411 (21) (2010) 2084–2100.

[63] M. Baioletti, A. Milani, V. Santucci, Automatic algebraic evolutionary1075

algorithms, in: Proc. of International Workshop on Artificial Life and

Evolutionary Computation (WIVACE 2017), 2018, pp. 271–283. doi:

10.1007/978-3-319-78658-2_20.

[64] M. Baioletti, A. Milani, V. Santucci, Learning bayesian networks with al-

gebraic differential evolution, in: Proc. of 15th International Conference1080

on Parallel Problem Solving from Nature (PPSN XV), 2018, pp. 436–448.

doi:10.1007/978-3-319-99259-4_35.

46

http://dx.doi.org/10.1007/978-3-319-78658-2_20
http://dx.doi.org/10.1007/978-3-319-78658-2_20
http://dx.doi.org/10.1007/978-3-319-78658-2_20
http://dx.doi.org/10.1007/978-3-319-99259-4_35

	Introduction
	Related work
	Differential Evolution and Particle Swarm Optimization
	Combinatorial variants of numerical EAs
	Binary EAs based on Probabilistic Decoders
	Angle Modulated EAs
	Random-Key based EAs

	Critical analysis of the decoder-based approaches
	Algebraic Background
	Groups
	Cayley Graphs
	Bit-String Group
	Permutation Group

	Algebra of Combinatorial Search Spaces
	Abstract Addition and Subtraction
	Abstract Scalar Multiplication
	Vector Operations for Bit-Strings
	Vector Operations for Permutations
	Algebraic Properties

	Algebraic Evolutionary Algorithms
	Algebraic Differential Evolution
	Algebraic Particle Swarm Optimization
	Search Characteristics of the AEAs

	Experimental Analysis
	Benchmarks
	Setup of the experiments
	Tuning of the parameters
	Standalone Algorithms Comparison
	Enhanced Algorithms Comparison
	Comparison with State-of-the-art Results

	Conclusion and Future Work

