
Using Pairwise Precedences for Solving
the Linear Ordering Problem

Valentino Santuccia, Josu Ceberiob

aUniversity for Foreigners of Perugia,
Piazza Fortebraccio 4, Perugia, Italy

bUniversity of the Basque Country (UPV/EHU),
Manuel Lardizabal Pasealekua, 20018 Donostia, Spain

Abstract

It is an old claim that, in order to design a (meta)heuristic algorithm for solv-

ing a given optimization problem, algorithm designers need first to gain a deep

insight into the structure of the problem. Nevertheless, in recent years, we

have seen an incredible rise of “new” meta-heuristic paradigms that have been

applied to any type of optimization problem without even considering the fea-

tures of these problems. In this work, we put this initial claim into practice

and try to solve a classical permutation problem: the Linear Ordering Problem

(LOP). To that end, first, we study the structure of the LOP by focusing on the

relation between the pairwise precedences of items in the solution and its ob-

jective value. In a second step, we design a new meta-heuristic scheme, namely

CD-RVNS, that incorporates critical information about the problem in its three

key algorithmic components: a variable neighborhood search algorithm, a con-

struction heuristic, and a destruction procedure. Conducted experiments, on

the most challenging LOP instances available in the literature, reveal an out-

standing performance when compared to existing algorithms. Moreover, we also

demonstrate (experimentally) that the developed heuristic procedures perform

individually better than their state-of-the-art counterparts.

Keywords: Linear ordering problem, precedence, meta-heuristic, insert

neighbourhood, variable neighborhood search, construction heuristic

Preprint submitted to Journal of LATEX Templates December 30, 2019

1. Introduction

In recent years, we have seen an incredible rise of new meta-heuristic paradigms

for solving a large variety of either combinatorial or continuous optimization

problems. Many of these algorithms have been proposed on the basis of some

natural metaphor. Unfortunately, as stated by Sorensen [42] in the paper Meta-5

heuristics: the metaphor exposed, many of these works have followed a dan-

gerous line of research that may lead the area of meta-heuristics away from

scientific rigor. In this direction, it is an old claim that, in order to design a

(meta)heuristic algorithm for solving a given optimization problem, algorithm

designers should first gain a deep insight into the structure of the problem [39].10

In this article, we put that classical methodology into practice by approach-

ing the Linear Ordering Problem (LOP) [27, 12].

The first works related to the LOP are by Leontief [26, 25], who tried to

model the US economy by triangulating the input-output matrices that describe

the dependencies between different economic branches. Nevertheless, nowadays,15

the LOP has innumerable applications in other areas, anthropology [20], tour-

nament rankings [27], psychology [23], and graph theory [40] to name a few.

Since the LOP is NP-hard [19], researchers have started to focus on using

meta-heuristic algorithms in order to obtain good enough solutions (see for

instance [37, 12, 4, 41]). A careful revision of the algorithms proposed in the20

recent literature reveals that researchers have repeatedly focused on what is

called either insert movement, insert neighborhood or variants of both. The

reason for this was extensively studied by Ceberio et al. [12] and concluded

that the insert operator/neighborhood has exceptional properties for solving

the LOP. This is mainly motivated by the following property of the problem:25

“Given a permutation σ that describes a solution for a LOP instance, and

the item σ(i) that is located at position i, then the respective ordering of the

previous and posterior items, with respect to i, does not affect its contribution

to the objective function.”

Another relevant property of a LOP solution is that its objective value is only30

2

given by the pairwise precedences among the permuted items in the solution.

As we will see later, this allows the LOP objective function to be expressed as

a sum of elementary objective contributions.

Both these structural properties are exploited in this work in order to design

a novel and effective meta-heuristic for LOP. The algorithm we propose, namely35

CD-RVNS, is mainly based on iterative applications of the Variable Neighbor-

hood Search (VNS) [32] scheme that are interleaved by a “problem-aware” shak-

ing stage carried out by means of two novel iterative greedy procedures for the

destruction and construction of the solutions.

The VNS algorithm is based on Local Search (LS) schemes, i.e., the solutions40

in the search space are organized according to a neighborhood topology, and the

search is carried out by moving from an incumbent solution to a neighboring one

according to a given criterion. VNS extends the idea of LS schemes and considers

two different neighborhood topologies, by switching from a main neighborhood

to a “secondary” one when the search gets trapped in a local optimum. In our45

work, we have considered the two classical permutation neighborhoods: insert

and interchange [37]. Importantly, computational time is saved by restricting

both neighborhoods using the LOP property studied by [12].

After a VNS execution, the resulting solution is partially destroyed and

heuristically rebuilt in order to start a new VNS execution. Both the destruction50

and construction procedures proposed, namely D-LOP and C-LOP, represent

a LOP solution as a set of pairwise precedences. In this way, the construc-

tion procedure can exploit the structural decomposition of the LOP objective

function in order to follow smoother moves in the space, while the destruction

stage is able to control the exploration behavior of the algorithm by using the55

collected information about the elementary objective entities visited throughout

the optimization.

Our proposal extends the works previously published in [12] and [5]. Indeed,

the idea of the restricted neighborhood introduced in [12] is adopted in the

VNS part of the algorithm. It is worth noting that this is the first application60

of the restriction procedure to the interchange neighborhood, and also inside

3

a VNS scheme. As regards to the C-LOP heuristic, though inspired by the

constructive procedure used in [5] in the context of an ant colony optimization

algorithm, a totally new and smarter implementation is introduced which allows

a quicker execution. Moreover, here we systemize some theoretical definitions in65

order to provide a complexity analysis of C-LOP both in the worst-case and the

average-case scenarios. Other remarkable novelties of this work are the D-LOP

procedure and the mechanisms used to interconnect the different algorithmic

components.

For the sake of validating the approach presented in this article (CD-RVNS),70

a thorough experimental study has been carried out and it can be summarized

in three blocks: (1) evaluate the contribution of the heuristic construction and

destruction procedures, (2) compare the overall performance of CD-RVNS with

respect to the state-of-the-art algorithms, and (3) statistically assess the ob-

tained results. Based on the conducted experiments, we clearly conclude that75

the proposed idea takes a step forward in LOP optimization by outperforming

the current state-of-the-art LOP algorithms.

The remainder of the paper is organized as follows: Section 2 provides an

analysis of the works related to our article, while in Section 3 a detailed study of

the problem structure of the LOP is presented. Then, in Section 4, we introduce80

our algorithm proposal: CD-RVNS. Afterwards, in Section 5, a thorough exper-

imental analysis of the algorithms and results is presented. Finally, conclusions

and lines for future research are exposed in Section 6.

2. Related Work

According to Garey and Johnson [19], the LOP is included in the group of85

NP-hard problems, which denotes the difficulty of solving it. Furthermore, the

decision variant of the LOP has been proven to be strongly NP-complete [18].

Due to the challenge that this problem represents, we find in the literature

a wide variety of different optimization algorithms that have approached the

LOP from different perspectives. They can be grouped into four categories: (1)90

4

exact methods, (2) approximation algorithms with theoretical guarantees, (3)

constructive heuristics, and (4) meta-heuristic algorithms.

As regards the first group, exact methods are able to solve instances of the

LOP up to size n = 80, however, these instances are considered to be relatively

small, and for larger instances, due to the computational requirements needed,95

these algorithms are not affordable. Some recent references are the Branch and

Bound approach by Charon and Hudry [13] and the Cutting Plane algorithm of

Mitchell and Borchers [31].

Regarding the second group, due to the NP-hardness of the problem, re-

searchers have tried to look for an approximation scheme with theoretical guar-100

antees. Though a trivial but practically limited 0.5-approximation scheme ex-

ists [29]. In fact, in [33] it has been proven that it is NP-hard to approximate the

LOP with a factor better than 65
66 (see also [27, Ch. 7.1]). What is worse is that

such a proof is not constructive so, until now, there is no known approximated

algorithm with theoretical guarantees that is usable in practice.105

In the third group, we consider the algorithms that, by using explicit in-

formation of the problem, iteratively build-up a solution. Known as construc-

tive algorithms [3, 6, 14], these start with an empty linear ordering of items

and iteratively add a new item by following some criteria. Though these al-

gorithms do not guarantee the optimality of the obtained solution, they are110

easy to implement and provide good quality solutions in a reasonable amount

of computational time. Despite their effectiveness when proposed, nowadays

they are usually implemented as part of more general and powerful schemes:

meta-heuristic algorithms.

Finally, the algorithms in the fourth group, meta-heuristics, are currently the115

most competitive schemes for solving the LOP (and also many other combinato-

rial and continuous domain problems). In the recent literature, Variable Neigh-

bourhood Search [17], Scatter Search [10], Ant Colony Optimization [15, 5], Dif-

ferential Evolution [4, 36], Memetic Algorithm [41], Iterated Local Search [35]

or Great Deluge Algorithm [34] have been applied to the LOP.120

According to some relevant works in the literature of LOP [38, 28, 12],

5

the Iterated Local Search (ILS), Memetic Algorithm (MA) and Tabu Search

(TS) have resulted as the most competitive paradigms. Among them, ILS has

been reported as the algorithm with highest performance rates on the most

challenging benchmarks.125

In order to measure the performances of heuristic and meta-heuristic algo-

rithms, a number of benchmarks of instances have been proposed throughout

decades. The classical benchmarks include IO [21], MB [30] or SGB [24]. Nev-

ertheless, many of the current approaches are able to reach the best known

solutions on the previous benchmarks almost systematically (that are, presum-130

ably, optimal). Later, other more challenging benchmarks were also proposed,

such as Rand [28], xLOLIB [38] or xLOLIB2 [12]. Finally, though less considered

in the literature, there exists a set of very large instances used in [34, 35].

3. The Linear Ordering Problem: definition and properties

In the following, after providing a formal definition of the Linear Ordering135

Problem (LOP), we outline two important properties of the solutions space of

the LOP that will be exploited later on in our work.

3.1. LOP definition

LOP can be equivalently defined both as a problem on (tournament) graphs

[13] and as a matrix triangulation problem [27]. For the sake of simplicity, in140

this article we use the matrix-form definition.

Hence, a LOP instance is given as a square matrix H of non-negative num-

bers, and the objective is to determine a simultaneous permutation of both rows

and columns of H such that the sum of the super-diagonal entries is maximized.

More formally, given H ∈ Rn×n, the goal is to find a permutation π∗ of the

set [n] = {1, 2, . . . , n} such that π∗ = arg maxπ∈Sn f(π), where Sn is the set of

all the permutations of [n] and the objective function f is defined as

f(π) =

n∑
i=1

n∑
j=i+1

Hπ(i),π(j). (1)

6

LOP has a variety of applications, and many existing problems can be re-145

formulated easily as the LOP. In the following, we will enumerate briefly some

of them.

In graph theory, considering H to be the weight matrix of a graph G, the

LOP is equivalent to finding the acyclic subgraph of G which maximizes the

sum of the arc weights [27].150

Moreover, the well known Kemeny’s problem [23, 2, 1] can be reformulated to

LOP: let consider m persons where each one has ranked n objects (e.g., political

parties), which is the linear ordering that aggregates the individual orderings in

the best possible way? It turns out that it is possible to build a LOP instance

by setting Hij to the number of persons who have ranked object i before object155

j.

One of the first applications of LOP was in economics. Particularly, the

LOP was used in the analysis of the so-called input-output tables [25]. Every

entry Hij represents the monetary flow from the economic sector i to the sector

j. Triangulating such a table (i.e., solving the LOP) allows a ranking of sectors160

to be determined whose linear flow is as large as possible. Such rankings are

often used for comparing the industrial structures between different countries.

Finally, a quite exotic application of the LOP is in anthropology [20] where

it has been used to determine a consistent ordering of some historical artifacts

whose dates are only partially known.165

3.2. LOP solutions as sets of precedences

A LOP solution can be straightforwardly represented as a permutation of

integers, i.e., a linear ordering of row/column indices (items). Anyway, given

π ∈ Sn, and observing equation (1), it is apparent how the terms summed up

in the objective function are given by the precedences among the items in π.170

Indeed, the matrix entry Hi,j appears in the (double) summation of equation

(1) if and only if i ≺π j, i.e., when i precedes j in π. The binary relation ≺π,

induced by π, is a total strict order on [n]. Therefore, for any permutation

π, either Hi,j or Hj,i contributes to the objective value of π depending on,

7

respectively, i ≺π j or j ≺π i.175

Moving on from this observation, it is possible to (equivalently) represent a

permutation as a set of precedences between items. Formally, given π ∈ Sn, the

set

P = {(i, j) : i, j ∈ [n] and i ≺π j} (2)

explicitly represents all the precedences encoded by π. For instance, in the

permutation π = 〈312〉 we have the three precedence relations 3 ≺π 1, 3 ≺π 2

and 1 ≺π 2, thus π is equivalent to the set P = {(3, 1), (3, 2), (1, 2)}.

Such a set P has the following properties:

• it is consistent, i.e., if (i, j) ∈ P , then (j, i) /∈ P ;180

• it is transitively closed, i.e., if (i, j) ∈ P and (j, k) ∈ P , then (i, k) ∈ P ;

• it is complete, i.e., either (i, j) ∈ P or (j, i) ∈ P .

Note also that, if a set of precedences is consistent, it is also complete if and only

if its cardinality is
(
n
2

)
. Moreover, a consistent and complete set of precedences

is guaranteed to be transitively closed.185

Representing a linear ordering as a set of precedences requires more mem-

ory than a linear permutation encoding. Anyway, this representation allows a

more fine-grained control on the objective value of the solution. Indeed, the

LOP objective function can be now restated as a single summation of the most

elementary units of objective value: formally, given a consistent and complete

set P of precedences over the items in [n], the LOP objective function can be

expressed as1

g(P) =
∑

(i,j)∈P

Hi,j . (3)

Hence, P is explicitly formed by objects (the precedences) which are connected

one-to-one to the atomic objective values of the LOP.

1It is straightforward to verify the equivalence between equations (1) and (3) when P is

the precedences set representation of π.

8

Importantly, this representation allows constructive heuristics to be devised

that smoothly build-up the LOP solution precedence by precedence, thus avoid-

ing drastic changes in the objective value that are common in all the previously190

proposed heuristics which work with the usual ”linear ordering” representation

[27, Ch. 2]. Indeed, classical constructive heuristics iteratively add items to the

linear ordering, but every item’s insertion accounts for multiple precedences.

Therefore, it is apparent how building up a solution precedence by precedence

has a smoother impact on its objective value. Since smoothness is often consid-195

ered to be beneficial in the field of fitness landscape analysis (see for example

[22, Ch. 5]), we think that this property can bring to an effective constructive

heuristic for the LOP.

For this reason, the construction and destruction procedures proposed in

this article (see Section 4) work with the LOP solutions represented as a set200

of precedences. Interestingly, this is a novelty with respect to the previously

proposed LOP construction heuristics, which are all based on the classical linear

representation of permutations (see [27, Chap. 2] for a survey on the topic).

However, note that, in the field of permutation-based optimization problems, the

precedences set representation has been considered by [8] to design a pheromone205

model for the Ant Colony Optimization (ACO) algorithm and by [5] in the ACO

solution construction procedure.

While equation (2) clearly shows how to obtain the precedences set repre-

sentation of a given permutation, the opposite conversion can be performed as

follows. By bearing in mind that permutations in Sn are bijective functions in210

[n], any permutation has a corresponding inverse permutation. Hence, given

a consistent and complete set of precedences P , we compute an intermediate

permutation σ ∈ Sn such that σ(i) = |{(k, i) ∈ P : k ∈ [n]}| + 1, then the

permutation π ∈ Sn, equivalent to P , is obtained by inverting σ, i.e., π = σ−1.

3.3. The restricted neighborhood215

According to the literature on the LOP, a recurrent option in meta-heuristic

design is to implement schemes that include local search algorithms under the

9

insert neighborhood. A recent analysis [12] on the suitability of that neigh-

borhood revealed that given a solution π ∈ Sn of the LOP (represented as a

permutation), for each item in π there exists a set of positions (regardless of220

the ordering of the rest of the items) in which the item cannot appear and the

solution is a local optimum. By definition, this fact is extended to global optima

solutions and gives information about the partial appearance of these.

Based on that information, the authors proposed a reduced version of the

insert neighborhood, namely restricted insert neighborhood. In this manuscript,225

we will consider it as the central neighborhood of the core algorithm (RVNS).

In what follows, the fundamentals of the LOP and the restricted neighborhood

are provided for basic intuition2:

• Under the insert neighborhood, two solutions σ and π are neighbours if π

is obtained by moving an item of σ to a different position.230

• Associated to each item π(i) are the set of parameters Hπ(i),j and Hj,π(i)

where j = 1, . . . , n.

• The parameters associated to an item π(i), remain associated regardless

of the position that the item adopts in π after an insert operation.

• The contribution of an item π(i) to the objective value consists of the235

sum of the matrix entries associated to it that appear in super-diagonal

locations. Note that (from the previous section) when i ≺π j then Hi,j

accounts for the objective value of π (and Hj,i does not). When an insert

operation is performed on an item, then its contribution varies as some

i ≺π j precedences no longer hold.240

Considering the previous notes, when a solution π is a local optimum, then

there is no insert operation in π that increases the contribution of any item

to the objective value. Obviously, that contribution depends on the location

2For a detailed description on the restricted neighborhood, we recommend the interested

reader to address the original work [12].

10

where it is placed, and also on the ordering of the rest of the items. However,

due to the matrix entries associated to each of the items, there are always some245

positions (at least one) for any item that, when placed there, the solution can

be improved (this is critical in order to restrict positions).

With illustrative purposes, let us consider an extreme case in which the

parameters of an item in the values in the column are larger than the values in

the row. In that particular case, that item must appear necessarily in the last250

position of the solution in order for this to be locally optimal. As a consequence,

when this item is located in any other position, then the solution cannot be a

local optimum, and thus cannot be the global optimum. These positions are

known as restricted positions. Finally, it is worth noting that, when performing

a greedy local search, the best insert movement in the insert neighborhood is255

never given by moving an item to a restricted position. Therefore, by avoiding

restricted positions, the neighborhood becomes smaller (less evaluations are

carried out) but returns the same result as the classical insert neighborhood.

Finally, it is worthwhile to note that, though the restriction has been origi-

nally defined only for the insert neighborhood, it can be safely extended to the260

interchange neighborhood3. Hence, in this work we use the restricted versions

of both the insert and interchange neighborhoods in order to devise an efficient

variable neighborhood search scheme (see Section 4.1).

4. Designing a metaheuristic for the LOP: CD-RVNS

In this section, we propose a meta-heuristic, namely CD-RVNS, that mainly265

consists of three algorithmic components:

• RVNS, i.e., a variable-neighborhood search algorithm based on restricted

neighborhood definitions specifically designed for the LOP;

3Under the interchange neighborhood, two solutions σ and π are neighbors if σ is obtained

by swapping the items in positions i and j of π.

11

• C-LOP, i.e., a randomized heuristic construction procedure that builds-up

a LOP solution precedence by precedence;270

• D-LOP, i.e., a destruction procedure that removes precedences from a

LOP solution with the aim of producing a new starting point for C-LOP.

The three procedures are arranged in an iterative process as follows. An

initial solution is built from scratch using C-LOP. Starting from this solution,

RVNS climbs up its basin of attraction till a local optimum is met. Then, D-275

LOP partially destroys the local optimum and the partial solution is fed again

to C-LOP for the next iteration of CD-RVNS.

The pseudo-code of CD-RVNS is provided in Algorithm 1. Both C-LOP

and D-LOP work with the precedences set representation, while RVNS uses the

classical linear representation of permutations. Hence, the procedures described280

in Section 3.2 are used, in lines 7 and 9, to convert between the two represen-

tations. Moreover, in the memory M (lines 3 and 10), we maintain the number

of occurrences of any possible precedence in the local optima visited so far by

RVNS. M is then used inside D-LOP (line 12) to increase the exploration ability

of the search. Finally, it is important to note that, though C-LOP and D-LOP285

require setting the greediness factor α and the destruction rate β, their values

are automatically and dynamically adapted during the iterations (lines 5 and

11). Therefore, conversely from most of the meta-heuristics in the literature,

CD-RVNS has the remarkable property of being a parameter-free algorithm.

We describe the working principles of RVNS, C-LOP, and D-LOP in, respec-290

tively, Sections 4.1, 4.2, and 4.3. Finally, Section 4.4 motivates the parameter

adaptation scheme that we have designed.

4.1. RVNS: Variable Neighborhood Search with Restricted Neighborhood

Restricted Variable Neighborhood Search (RVNS) is the core paradigm of

the proposed approach. As stated in the introduction, a VNS explores solutions295

alternating between two neighborhoods: a main neighborhood and a secondary

neighborhood. Subsequently, the optimization is carried out in RVNS as follows.

12

Algorithm 1 General scheme of CD-RVNS

1: function CD-RVNS(H ∈ Rn×n) . H is the LOP instance matrix

2: P ← ∅ . P is a set of precedences

3: M ← 0 . M is a n× n matrix of counters

4: while n evals < max evals do . Stopping criterion is not met.

5: α← get a random number in [0.9, 1)

6: P ← C-LOP(P, α,H)

7: π ← convert the set of precedences P to a permutation

8: π ← RVNS(π,H)

9: P ← convert the permutation π to a set of precedences

10: for each (i, j) ∈ P , increase the counter Mi,j

11: β ← 1− 0.9 · (n evals/max evals)

12: P ← D-LOP(P,M, β)

13: increase n evals by the function evaluations consumed in RVNS

14: return π

First, a greedy local search is carried out on the restricted insert neighborhood

until it gets trapped in a locally optimal solution. Then, in order to continue

with the optimization, one step of local search is carried out in the secondary300

neighborhood, the restricted interchange neighborhood. These two phases are

iteratively repeated until a local optimum common to both neighborhoods is

found.

Afterwards, a procedure to modify the solution called shake is applied to the

current solution with the aim of moving to another area of the fitness landscape305

(the best solution found so far is saved). In our proposal, the shake consists of a

Destruction-Construction procedure explained in sections 4.3 and 4.2. Finally,

the algorithm iterates back to the local search phases with the newly created

solution.

4.2. C-LOP: Construction heuristic procedure for LOP310

C-LOP is a randomized constructive heuristic which works with the prece-

dences set representation introduced in Section 3.2. Starting from a (possibly

13

empty) partial solution, C-LOP iteratively adds precedences till a complete so-

lution is obtained. The choice of the precedence is guided by the heuristic

information contained in the LOP matrix H, while the parameter α ∈ [0, 1]315

regulates the greediness of C-LOP. Its pseudo-code is provided in Algorithm 2.

Algorithm 2 The C-LOP heuristic construction procedure

1: function C-LOP(P ⊂ Un, α ∈ [0, 1], H ∈ Rn×n)

2: C ← Un \ {(i, j) : (i, j) ∈ P or (j, i) ∈ P}

3: while |P | <
(
n
2

)
do

4: r ← random number in [0, 1)

5: if r < α then

6: (i, j)← argmax(a,b)∈C Ha,b

7: else

8: (i, j)← roulette wheel on C basing on H

9: P ← TransitiveClosure(P ∪ {(i, j)})

10: C ← C \ {(i, j) : (i, j) ∈ P or (j, i) ∈ P}

11: return P

Let Un denote the universe set of the possible precedence relations in [n], i.e.,

Un = {(i, j) : i, j ∈ [n] and i 6= j}, then C-LOP requires as input a set P ⊂ Un

that is both consistent and transitively closed. This allows C-LOP to be used

starting from a partial solution. Moreover, since the empty set is consistent and320

transitively closed, C-LOP can also be used, as any other heuristic, to construct

a solution from scratch.

In line 2, the candidate set C of precedences that can be added to P without

violating its consistence is computed. Then, the loop in lines 3–10 fills up P

by adding new precedences in such a way that the consistence and transitive325

closure of P are maintained as loop invariant conditions. In every iteration of

the loop, the following steps are performed:

• in lines 4–8, a candidate precedence (i, j) is selected from C by following

two possible strategies: (i) with probability α, the precedence with the

largest heuristic value is selected, or (ii) with probability 1−α, a roulette330

14

wheel tournament is performed on C in such a way that any (i, j) ∈ C

has probability Hi,j/
∑

(a,b)∈C Ha,b to be selected;

• in line 9, the selected (i, j) is added to P together with the newly induced

precedences;

• in line 10, C is updated by removing the newly introduced precedences335

and their reverses.

The loop ends as soon as |P | =
(
n
2

)
, i.e., when P is consistent and complete.

Hence, P is now a valid linear ordering and it is returned in line 11.

As shown in Appendix A, C-LOP has an average time complexity O(n2 log n)

when invoked starting from an empty solution.340

4.3. D-LOP: Destruction procedure for the LOP

D-LOP is a destruction procedure that takes as input a complete LOP solu-

tion and iteratively removes precedences from it in such a way that the returned

partial solution is a consistent and transitively closed set of precedences that

can be safely fed to C-LOP in the next iteration of CD-RVNS.345

The number of removals is given by the destruction rate β ∈ [0, 1], while

a preferential ordering on the precedences to be removed is obtained from the

occurrences memory M (see lines 3 and 10 of Algorithm 1). The aim is to opt for

the removal of precedences that have been met more often in the local optima

visited so far by CD-RVNS. This mechanism guides the search of CD-RVNS350

towards less visited regions of the search space.

The pseudo-code of D-LOP is provided in Algorithm 3. Since the set P in

input is complete, |P | =
(
n
2

)
. Hence, in line 2, we use β to compute the number

m of removals as a percentage of
(
n
2

)
. In line 3, we sort, in descending order

(with ties randomly broken), the entries of M . This is the ordering by which355

we consider candidate precedences to be removed from P in the loop in lines

5–14. In line 6, we select a candidate precedence (i, k) ∈ P . In general, by only

removing (i, k) we cannot assure that P will be transitively closed. Indeed, we

also need to consider all the pairs of precedences (i, j) and (j, k) which are in

15

Algorithm 3 The D-LOP destruction procedure

1: function D-LOP(P ⊂ Un,M ∈ Nn×n, β ∈ [0, 1])

2: m← bβ ·
(
n
2

)
c

3: sort in descending order the entries of M (ties broken randomly)

4: t← 0

5: while t < m and not all the precedences in P have been scanned do

6: (i, k)← get next precedence from P based on the ordering in M

7: r ← random number in [0, 1)

8: if r < 0.5 then

9: R← {(i, k)} ∪ {(i, j) : j 6= k and (i, j) ∈ P and (j, k) ∈ P}

10: else

11: R← {(i, k)} ∪ {(j, k) : j 6= i and (i, j) ∈ P and (j, k) ∈ P}

12: if t+ |R| ≤ m then

13: P ← P \R

14: t← t+ |R|

15: return P

P . Actually, P is guaranteed to be transitively closed if we remove (together360

with (i, k)) the first precedence of all such pairs or, alternatively, the second

precedence of all those pairs. Hence, in lines 7–11, we compute the candidate

set R of removals by randomly choosing between the precedences of the first or

second type. By noting that t denotes the number of removals so far, in lines

12–14, if the desired number of removals m is not exceeded, the precedences in365

R are removed from P and the counter is updated. When either the number of

desired removals is reached, or all the precedences of P have been scanned, the

loop ends and the current (transitively closed) set P is returned in line 15.

It is easy to see that any selected removal induces no more than n additional

precedences to be removed (i.e., |R| ≤ n), hence D-LOP is guaranteed to remove370

at least bβ ·
(
n
2

)
c−n+ 1 precedences from P . Moreover, though we are not able

to theoretically guarantee the removal of exactly bβ ·
(
n
2

)
c precedences, in all the

conducted experiments, the desired number of removals has been always met.

Finally, the asymptotic complexity of D-LOP isO(n2 log n). Indeed, by using

16

the data structure introduced in Appendix A, it is possible to efficiently perform375

the O(n2) iterations of the loop in lines 5–14. Hence, the whole complexity is

given by the sorting operation in line 3. Since |M | = Θ(n2), the sorting step

requires O(n2 log n) time.

4.4. Parameters Adaptation Scheme

CD-RVNS does not require any parameter to be set. Indeed, the two param-380

eters α and β of, respectively, C-LOP and D-LOP are automatically set during

the iterations of CD-RVNS.

The greediness factor α is randomly sampled from the interval [0.9, 1) before

any execution of C-LOP (see line 5 of Algorithm 1). This interval guarantees

a good trade-off between effectiveness and diversity of the solutions produced385

by C-LOP. Note also that the interval is open on the right because, otherwise,

the setting α = 1 results in a deterministic behavior of C-LOP. An experimen-

tal analysis, discussed in Section 5.1, shows that C-LOP, using this setting, is

preferred to the state-of-the-art LOP construction heuristics in the literature.

The destruction rate β represents the percentage of precedences to remove390

from the last local optimum visited. Hence, by regulating the value of β, it is

possible to trade the exploration and exploitation degrees of CD-RVNS. A small

destruction rate guides the search in the nearby area of the recently visited local

optimum, while a large value induces a more diverse search that, in principle,

can allow CD-RVNS to escape stagnation situations. Using the formula in line395

11 of Algorithm 1, the parameter β is linearly shaded from 1 to 0.1 with the

passing of the iterations. Therefore, as is common in a lot of the meta-heuristics

in the literature, CD-RVNS moves from a diverse search in the earlier phases to

a larger intensification behavior in the later iterations.

5. Experimental Study400

For the sake of evaluating the performance of CD-RVNS, we carry out a

thorough experimental analysis. Firstly, we analyze the performance of the

17

proposed constructive algorithm C-LOP, and compare it with two other state-of-

the-art procedures. Then, we evaluate the performance of the overall algorithm,

placing special emphasis on the shaking method. At that point, we will evaluate405

the contribution of the constructive-destructive procedure proposed, and we

compare it with another common option from the literature. Afterwards, we

evaluate the overall performance of the algorithm by comparing the obtained

results with those reported in the literature (the state-of-the-art). This is done

using two different stopping criterion: (1) maximum number of evaluations410

performed and (2) maximum execution time limit. Conclusions are drawn on

the basis of the Bayesian statistical analysis introduced by Benavoli et al. [7]4.

As stated in Section 2, although a number of benchmarks have been proposed

for evaluating the performance of the algorithms, nowadays, only some of them

are useful for that purpose. In this sense, we have used the benchmarks xLOLIB415

and xLOLIB2 (proposed in [38] and [12], respectively) for analyzing the different

design options of the CD-RVNS, and extended them with the RandA1, RandA2

and RandB benchmarks [28] when evaluating the performance of CD-RVNS with

respect to the state-of-the-art algorithm, ILSr. Finally, though less considered

in the literature, we also run CD-RVNS on the set of very large instances used420

in [34, 35].

5.1. Construction heuristic

One of the key points in this proposal is to evaluate whether the construc-

tion strategy C-LOP based on the precedences’ set representation, is competitive

when compared to other existing constructive algorithms (note that this algo-425

rithm is used to provide an initial good solution to CD-RVNS). To that end,

we will compare C-LOP with the two best constructive algorithms reported by

Marti [27]: Becker’s algorithm [6] and Best Insertion (BI) algorithm [27].

With this in mind, we executed the three algorithms, i.e., C-LOP, Becker’s

4Source codes, instances and additional experimental results are available at: https://

github.com/sgpceurj/Precedences_LOP.

18

https://github.com/sgpceurj/Precedences_LOP
https://github.com/sgpceurj/Precedences_LOP

algorithm, and BI on the xLOLIB and xLOLIB2 instances. C-LOP was run430

starting from an empty solution, moreover, it is worth pointing out that Becker’s

algorithm is deterministic, while the other two proposals are stochastic. In

this sense, these algorithms were run 20 times for each instance in the bench-

marks. Results are summarized in Fig. 1 as average relative percentage devia-

tion (ARPD) with respect to the best known solutions (the new best solutions435

obtained in this work), and grouped as box-plots according to the size of the

instance.

Figure 1: Performance comparison of Becker’s algorithm, Best Insertion algorithm and C-LOP.

Results are shown as ARPD w.r.t. best known solutions reported.

Conducted experiments shown in Fig. 1 reveal that the proposed strategy

obtains, in general, better results than Becker’s algorithm and BI. Only for

instances of size 1000, BI shows similar or better behavior. Anyway, it is worth440

noting that the variance of our strategy is higher, i.e., the obtained set of results

is more heterogeneous. A characteristic that is interesting when the constructive

algorithm is used inside a shaking method, as in our case.

19

5.2. Shaking method

Another critical part of the proposed algorithm is to evaluate the suitability445

of the different shaking methods. In this case, we aim to evaluate the perfor-

mance of the Constructive-Destructive (CD) procedure proposed for shaking the

solutions, and compare it to the most used method in the literature: performing

swaps of n/10 random pairs of items [38, 11].

To that end, we run the CD-RVNS, and a similar algorithm in which we450

have replaced the CD shake with the swap shake. Both algorithms were run

with a limit of 1000n2 objective function evaluations. As both algorithms are

stochastic, we performed 20 executions per instance. Results are summarized

as box-plots in Fig. 2. Conducted experiments point out that, definitively,

Figure 2: Performance comparison pairwise precedence and swap shake algorithms. Results

are shown as relative error w.r.t. best known solutions reported.

the proposal that implements the CD shake outperforms the shake procedure455

proposed in [38, 11]. Moreover, as the size of the instance increases, results show

that the variance of the algorithm with CD shake is lower than its counterpart.

20

5.3. Comparing to the state-of-the-art

In order to analyze the overall performance of the designed algorithm, we

carried out a broad experimental analysis whose results are summarized in this460

section.

As stated in Section 2, according to latest works in the literature of LOP [38,

28, 12], ILS, and especially, ILSr (restricted version of ILS introduced in [12])

can be seen as the algorithm with the highest performance rates on the most

challenging benchmarks. Thus, in this experimental study, we will compare the465

results obtained by the CD-RVNS with those of ILSr.

Finally, in order to carry out a comparison of the algorithms as fairly as

possible, both algorithms have been set with the same stopping criterion: a

maximum of 1000n2 objective function evaluations5. Both algorithms are exe-

cuted 20 times on each instance of the xLOLIB and xLOLIB2 benchmarks, and470

the RandA1, RandA2 and RandB benchmarks (from now on Rand benchmarks).

Results are summarized in Table 1 grouped in equal size instances (for

xLOLIB and xLOLIB2), and grouped in benchmarks for Rand type instances.

Numerical values describe the number of instances for which CD-RVNS obtained

better mean objective value (over 20 repetitions) than ILSr.

xLOLIB benchmarks Rand

150 250 300 500 750 1000 A1 A2 B

CD-RVNS vs. ILSr 25 30 33 43 50 50 99 33 41 404

Total instances 39 39 50 50 50 50 100 75 90 543

Table 1: Summary of the number of instances for which CD-RVNS shows a better average

performance than ILSr.

475

The summary reveals that CD-RVNS is highly competitive and obtains bet-

ter results than ILSr in 231 instances out of 278 (83%) in xLOLIB benchmarks,

and in 173 instances out of 265 (65.2%) in Rand benchmarks. Not limited to

5Calculating the objective value of a neighboring solution, despite being efficient and having

a lower time complexity than in Eq. 1, counts as one, since both algorithms implement equally

efficient insert neighborhood revisions.

21

that, the proposed algorithm is able to obtain new best known solutions in 234

out of 278 instances (all of them for xLOLIB and xLOLIB2). In general, CD-480

RVNS obtained on average the best fitness value for 404 instances out of 543

(74%).

With the aim of gaining some intuition with regard to the performance

difference between both algorithms, ARPD results have been illustrated as box-

plots in Figs. 3 and 4.

Figure 3: Performance comparison of CD-RVNS and ILSr on the xLOLIB and xLOLIB2

benchmarks of instances. Results are shown as ARPD w.r.t. the best known solutions found,

and have been grouped according to the size of the instance.

485

The figures confirm the results in Table 1. As regards to xLOLIB bench-

marks (see Fig. 3), the larger the size of the instance, the higher the difference

between the algorithms. Moreover, the box-plots show that for the smallest

instances (n = 150 and n = 250), although the two algorithms obtained similar

results, CD-RVNS has better median values. In relation to the Rand bench-490

marks (see Fig. 4), we observe that RandA1 is the most challenging benchmark

as differences are larger, however, CD-RVNS beats ILSr. As regards RandA2

and RandB, ILSr is slightly more competitive, however, the distances with re-

22

Figure 4: Performance comparison of CD-RVNS and ILSr on the Rand benchmarks of in-

stances. Results are shown as ARPD w.r.t. the best known solutions found.

spect to the best known values in either cases are very small.

Not limited to the comparison above, we have also compared the perfor-495

mance of CD-RVNS and ILSr using an execution time limit as stopping crite-

rion. In particular, we repeated the experiment above for four different limits:

50s, 100s, 200s and 500s. The executions were carried out on a cluster of 20

nodes, each of them equipped with two Intel Xeon X5650 CPUs and 48GB of

memory. Both algorithms were implemented in C++ and the same compiler500

was used for building the binaries. Results obtained for 50s time limit are de-

picted in Fig. 5. As can be observed, when considering the results on xLOLIB

benchmarks, CD-RVNS outperforms ILSr for all the instance sizes, and the

performance difference becomes larger as the size of the instances increases. In

relation to the results on Rand benchmarks, values observed in Fig. 4 are almost505

repeated. In fact, CD-RVNS is more (or equally) competitive with respect to

ILSr in the three benchmarks. Similar results were observed for the rest of the

time limits considered. The interested reader is referred to the supplementary

material in the Github repository (see footnote 4) for the figures with 100s, 200s

23

and 500s.

(a) xLOLIB benchmarks (b) Rand benchmarks

Figure 5: Performance comparison of CD-RVNS and ILSr with 50 seconds of execution limit

as stopping criterion.

510

Additionally, in Appendix B the best values obtained by CD-RVNS in the

presented experimentation have been introduced. Note that in 202 instances out

of 543 it was able to reach to the best known values reported in the literature,

and in other the 278 cases new best known solutions were obtained.

515

5.4. Bayesian statistical analysis

In order to statistically assess the results obtained, we have followed the

Bayesian approach presented in [7], as it provides a deeper insight into the

results than the classical null hypothesis significance tests. In particular, as we

cannot assume that the experimental results come from a Gaussian distribution,520

we have used the Bayesian equivalent of the Wilcoxon’s test6.

The Bayesian analysis was conducted on the ARPDs obtained by each algo-

rithm in the 20 repetitions. The procedure used requires the definition of what

is understood as ‘practical equivalence’ or ’rope’ in [7]. In our case we have

6We have used the implementation available in the development version of the scmamp

R package [9] available at https://github.com/b0rxa/scmamp.

24

https://github.com/b0rxa/scmamp

considered that both approaches are equivalent when the difference in ARPD525

is smaller than 5× 10−47. Fig. 6 shows a summary of the results in a Simplex

plot.

Figure 6: Simplex Plot. Average Posterior probabilities of being the winners: CD-RVNS:

0.8121, ILSr: 0.0859 and Rope: 0.1019. This is done by assuming that a difference between

the algorithms lower than 0.0001 points out practical equivalence.

Briefly, the points in the plot represent a sampling of the posterior distribu-

tion of the probability of win-lose-tie. In other words, the closer a point is to

the CD-RVNS vertex of the triangle (or, equivalently, to the ILSr or the Rope530

vertices), the more probable it is for CD-RVNS to produce better results (or

equivalently, ILSr or both algorithms being equal). Therefore, the three areas

delimited by the dashed lines show the dominance regions, i.e., the area where

the highest probability corresponds to its vertex. For more details, see [7].

The plot shows that there is almost no uncertainty about the results. The535

probability mass of the posterior is on the side of the CD-RVNS. Hence, we can

summarize the distribution shown in the plot, estimating the average posterior

7We can set this rope at any reasonable value. In our case, we have fixed its value according

to the magnitude of the ARPD produced by both algorithms, and mainly with visualization

purposes.

25

probability for each situation (CD-RVNS being better, equal or worse than

ILSr). In that case, the expected probabilities are 0.8121 that CD-RVNS obtains

better results, 0.1019 that the results of both algorithms are equivalent and540

0.0859 that ILSr obtains better results. In other words, it is almost 8 times

more probable that CD-RVNS outperforms ILSr than the opposite.

5.5. Additional experiments on very large instances

For the sake of completeness, CD-RVNS has been run on the very large

instances used in [34] and [35]. These are 150 instances with sizes that range545

in [500, 8000], and are specifically designed to highlight the characteristics of

the TREE technique introduced in [35]. This technique was proposed as an

algorithm to speed up the computation of a local search iteration in the LOP.

Particularly, authors introduced it in the framework of ILS, proposing the ILS-

TREE [34].550

It is worth noting that ILS-TREE does not use the restricted neighborhood

used in ILSr and in our work, it can thus be considered a clever algorithmic

speed-up technique that, in principle, can also be applied in the restricted neigh-

borhood framework.

In order to carry out a fair comparison of ILS-TREE and CD-RVNS, it is555

necessary to know the number of evaluations performed in the experimentation

in [34]. Unfortunately, the authors of [34] do not specify the number of eval-

uations performed in their experimentation. Furthermore, they only provide

relative deviations (with respect to the objective results reported in [35]) aver-

aged on every one of the 30 (n, p) instance configurations8. Therefore, in our560

experimentation on this benchmark suite, we executed CD-RVNS, 20 times per

instance, for min{1000n2, 1010} evaluations. We computed the relative devia-

tions as done in [35] and we compared our results with those of ILS-TREE when

executed with its best parameters setting. CD-RVNS obtained better results on

21 out of 30 (n, p) instance configurations. The detailed results are provided in565

8In [34] and [35], n is the instance size, while p is the instance density.

26

the supplementary material available in the online repository (see footnote 4).

6. Conclusions & Future Work

In this paper, we have put into practice an old claim about designing opti-

mization problems, that is, gain as much information and intuition as possible

about the problem, and then design an approach that is able to efficiently and570

effectively use all that information.

To that end, we took the Linear Ordering Problem (LOP), we studied two

structural properties of LOP solutions, and we exploited them in order to design

an effective meta-heuristic for the LOP.

The proposed algorithm, CD-RVNS, mainly employs three algorithmic com-575

ponents that iteratively interact with each other: a variable neighborhood search

procedure working with restricted neighborhood definitions, and two iterative

greedy heuristic procedures for constructing and destructing LOP solutions by

means of a novel precedences set representation of permutations.

Remarkably, the interaction among the different components of CD-RVNS580

has been designed in such a way that no parameters need to be set by the

practitioner.

For the sake of validating the presented approach, we conducted a thorough

experimental study in three blocks: (1) evaluate the construction and destruc-

tion procedures, (2) compare the overall performance of CD-RVNS with respect585

to the state-of-the-art algorithm on two different stopping criterion, and (3)

statistically assess the obtained results. From the observed results, we clearly

concluded that the proposed idea takes a step forward in LOP optimization by

outperforming the current state-of-the-art algorithms. The outstanding results

might be motivated mainly by two reasons: a very efficient VNS scheme de-590

vised by means of the restricted neighborhood technique, and the efficient and

effective iterated greedy destructive-constructive procedures based on the new

precedence-based representation for the LOP solutions.

The research work carried out in this paper demonstrated that considering

27

the relevant information about the structure of the problem when designing595

algorithms may make headway in terms of quality of solutions obtained. In this

sense, we think there are still possibilities for future research by developing the

properties of the LOP. One of these is an extension of the property of the LOP

presented in the introduction:

“Given a solution σ of the LOP, and the item σ(i) that is located at position600

i, then the ordering of the items in positions 1 . . . i− 1 does not affect the con-

tribution σ(i) to the objective function (the same for the ordering of the items

at positions i+ 1 . . . n.”

Nonetheless, this property can be extended to any subset of consecutive

positions in the solution, i.e.,605

“Given a solution σ of the LOP, and m + 1 items at positions k . . . k + m,

{σ(k), σ(k+ 1), . . . , σ(k+m)}, then the ordering of the items at positions i < k

(or those in i > k + m) does not affect the contribution of the items from k to

k +m.”

Taking into account the property above, then, given a solution for the prob-610

lem, it is possible to develop algorithms that fix some positions of the solution,

and focus exclusively optimizing the subset of items that has not been fixed.

The property guarantees that this type of strategy cannot obtain, in any case,

worse quality solutions than the initial one.

Acknowledgements615

This work has been partially supported by: the Research Groups 2019-2020

(IT1244-19) and Elkartek Program (PROMISE project) from the Basque Gov-

ernment, the TIN2016-78365-R research project from the Spanish Ministry of

Economy, Industry and Competitiveness, and EMPHATIC H2020 project from

the European Research Council, and the research grant “Fondi per i progetti di620

ricerca scientifica di Ateneo 2019” of the University for Foreigners of Perugia un-

der the project “Algoritmi evolutivi per problemi di ottimizzazione e modelli di

apprendimento automatico con applicazioni al Natural Language Processing”.

28

References

[1] Aledo JA, Gámez JA, Molina D. Tackling the rank aggregation prob-625

lem with evolutionary algorithms. Applied Mathematics and Computation

2013;222:632 –44.

[2] Ali A, Meilă M. Experiments with kemeny ranking: What works when?

Mathematical Social Sciences 2012;64(1):28 – 40. Computational Founda-

tions of Social Choice.630

[3] Aujac H. La hiérarchie des industries dans un tableau des échanges in-

terindustriels. Revue économique 1960;11(2):169–238.

[4] Baioletti M, Milani A, Santucci V. Linear ordering optimization with a

combinatorial differential evolution. In: 2015 IEEE International Confer-

ence on Systems, Man, and Cybernetics. 2015. p. 2135–40.635

[5] Baioletti M, Milani A, Santucci V. A new precedence-based ant colony

optimization for permutation problems. In: Proc. of Asia-Pacific Confer-

ence on Simulated Evolution and Learning (SEAL 2017). Cham: Springer

International Publishing; 2017. p. 960–71.

[6] Becker O. Das helmstädtersche reihenfolgeproblem – die effizienz ver-640

schiedener näherungsverfahren -. In: Computers Uses in the Social Sci-

ences, Berichteiner Working Conference. Vienna; 1967. .

[7] Benavoli A, Corani G, Demšar J, Zaffalon M. Time for a change: a tutorial

for comparing multiple classifiers through bayesian analysis. The Journal

of Machine Learning Research 2017;18(1):2653–88.645

[8] Blum C, Sampels M. Ant colony optimization for fop shop scheduling: a

case study on different pheromone representations. In: Proc. of the 2002

Congress on Evolutionary Computation. 2002. p. 1558–1563 vol.2.

[9] Calvo B, Santafe G. scmamp: Statistical comparison of multiple algorithms

in multiple problems. The R Journal 2015;8(1):248–56.650

29

[10] Campos V, Glover F, Laguna M, Mart́ı R. An experimental evaluation of

a scatter search for the linear ordering problem. Journal of Global Opti-

mization 2001;21(4):397–414.

[11] Ceberio J, Irurozki E, Mendiburu A, Lozano JA. A distance-based

ranking model estimation of distribution algorithm for the flowshop655

scheduling problem. IEEE Transactions on Evolutionary Computation

2014;18(2):286–300.

[12] Ceberio J, Mendiburu A, Lozano JA. The Linear Ordering Problem Re-

visited. European Journal of Operational Research 2014;241(3):686–96.

[13] Charon I, Hudry O. A survey on the linear ordering problem for weighted660

or unweighted tournaments. 4OR 2007;5(1):5–60.

[14] Chenery HB, Watanabe T. International comparisons of the structure of

production. Econometrica 1958;26(4):487–521.

[15] Chira C, Pintea CM, Crisan GC, Dumitrescu D. Solving the linear ordering

problem using ant models. In: Proceedings of the 11th Annual conference665

on Genetic and evolutionary computation. New York, NY, USA: ACM;

GECCO ’09; 2009. p. 1803–4.

[16] Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms.

MIT press, 2009.

[17] Garcia CG, Pérez-Brito D, Campos V, Mart́ı R. Variable neighborhood670

search for the linear ordering problem. Computers & Operations Research

2006;33(12):3549 –65.

[18] Garey MR, Johnson DS. “ Strong ” NP-completeness results: Motivation,

examples, and implications. J ACM 1978;25(3):499–508.

[19] Garey MR, Johnson DS. Computers and Intractability: A Guide to the675

Theory of NP-Completeness. New York, USA: W. H. Freeman & Co., 1979.

30

[20] Glover F, Klastorin T, Klingman D. Optimal weighted ancestry relation-

ships. Management science report series. Business Research Division, Grad-

uate School of Business Administration, University of Colorado, 1972.

[21] Grötschel M, Jünger M, Reinelt G. A cutting plane algorithm for the linear680

ordering problem. Operations research 1984;32(6):1195–220.

[22] Hoos H, Sttzle T. Stochastic Local Search: Foundations & Applications.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004.

[23] Kemeny JG. Mathematics without numbers. Daedalus 1959;88:577–91.

[24] Knuth D. The Stanford GraphBase: A Platform for Combinatorial Com-685

puting. ACM Press, 1993.

[25] Leontief W. Input-Output Economics. Oxford University Press, 1966.

[26] Leontief WW. Quantitative input and output relations in the economic

systems of the united states. The Review of Economics and Statistics

1936;18(3):105–25.690

[27] Mart́ı R, Reinelt G. The linear ordering problem: exact and heuristic

methods in combinatorial optimization. volume 175. Springer, 2011.

[28] Mart́ı R, Reinelt G, Duarte A. A benchmark library and a comparison of

heuristic methods for the linear ordering problem. Comput Optim Appl

2012;51(3):1297–317.695

[29] Mishra S, Sikdar K. On approximability of linear ordering and re-

lated NP-optimization problems on graphs. Discrete Applied Mathematics

2004;136(2):249 –69. The 1st Cologne-Twente Workshop on Graphs and

Combinatorial Optimization.

[30] Mitchell J, Borchers B. Solving real-world linear ordering problems using700

a primal-dual interior point cutting plane method. Annals of Operations

Research 1996;62(1):253–76.

31

[31] Mitchell J, Borchers B. Solving linear ordering problems with a combined

interior point/simplex cutting plane algorithm. In: Frenk H, Roos K, Ter-

laky T, Zhang S, editors. High Performance Optimization. Springer US;705

volume 33 of Applied Optimization; 2000. p. 349–66.

[32] Mladenovic N, Hansen P. Variable neighborhood search. Computers &

Operations Research 1997;24(11):1097 –100.

[33] Newman A, Vempala S. Fences are futile: On relaxations for the linear

ordering problem. In: Aardal K, Gerards B, editors. Integer Program-710

ming and Combinatorial Optimization. Berlin, Heidelberg: Springer Berlin

Heidelberg; 2001. p. 333–47.

[34] Sakuraba CS, Ronconi DP, Birgin EG, Yagiura M. Metaheuristics for

large-scale instances of the linear ordering problem. Expert Systems with

Applications 2015;42(9):4432 –42.715

[35] Sakuraba CS, Yagiura M. Efficient local search algorithms for the lin-

ear ordering problem. International Transactions in Operational Research

2010;17(6):711–37.

[36] Santucci V, Baioletti M, Milani A. An algebraic differential evolution for

the linear ordering problem. In: Proceedings of the Companion Publication720

of the 2015 Conference on Genetic and Evolutionary Computation. New

York, USA: ACM; 2015. p. 1479–80.

[37] Schiavinotto T, Stützle T. Search Space Analysis of the Linear Ordering

Problem. In: Applications of Evolutionary Computing. Springer Berlin

Heidelberg; volume 2611 of LNCS ; 2003. p. 322–33.725

[38] Schiavinotto T, Stützle T. The linear ordering problem: instances, search

space analysis and algorithms. Journal of Mathematical Modelling and

Algorithms 2004;.

[39] Simon HA, Newell A. Heuristic problem solving: The next advance in

operations research. Operations Research 1958;6(1):1–10.730

32

[40] Slater P. Inconsistencies in a schedule of paired comparisons. Biometrika

1961;48(3/4):303–12.

[41] Song J, Zhao H, Zhou T, Tao Y, Lü Z. Solving the linear ordering prob-

lem via a memetic algorithm. In: Proceedings of the Future Technologies

Conference (FTC) 2018. Cham: Springer International Publishing; 2019.735

p. 421–30.

[42] Sörensen K. Metaheuristicsthe metaphor exposed. International Transac-

tions in Operational Research 2015;22(1):3–18.

Appendix A. Complexity of C-LOP

Here, we analyze the time complexity of C-LOP when invoked starting from740

an empty set of precedences P = ∅, i.e., the worst possible input for P , while

we do not make any assumption on the parameter α and the problem instance

H.

We start by describing the data structure adopted. A partial solution P is

maintained by using three lists for each item i ∈ [n]: the predecessors of i in745

P , the successors of i in P , and the items without any relation with i in P .

For each list, we also maintain their inverted maps. This structure allows us to

efficiently add a new precedence in P and to quickly compute its transitive clo-

sure by efficiently scanning the assigned and unassigned precedences. Moreover,

in order to perform the roulette wheel selection (line 8, algorithm 2) in O(n)750

time, we maintain the row sums of H by taking into account only the entries

corresponding to the precedences in C. Lastly, we initially sort the H entries in

descending order and we set a pointer to the largest (first) entry. This allows us

to efficiently select the largest heuristic value required in line 6 of algorithm 2.

Since C-LOP is a randomized heuristic, we analyze both its worst case and755

average case execution scenarios. Obviously, the latter is much more important

for the context where we use C-LOP.

33

Note that, at any iteration of the main loop, at least one precedence is

introduced in P . Therefore, the maximum number of
(
n
2

)
= Θ(n2) iterations is

obtained when exactly one precedence per iteration is introduced in P . In such a760

case, the transitive closure does not add any extra precedence, so the complexity

of a single iteration is only given by the precedence selection procedures. Since

the H entries have been ordered, the selection in line 6 simply requires to move

the pointer to the next available precedence. Hence, the whole complexity of an

iteration is given by the roulette wheel procedure that costs O(n). Therefore,765

in the worst case scenario, C-LOP requires O(n3) operations.

Nevertheless, in the average case, C-LOP requires a more affordable com-

putational time. Given a consistent set P of precedences, we say that a per-

mutation π agrees with P if and only if P is a subset of the precedences set

representation of π. Initially, P = ∅ and all the n! permutations of Sn agree with770

P . Since at every iteration a randomly selected precedence i ≺ j is added to P

(together with its induced precedences), we have that the set of permutations

which agree with P is roughly halved with respect to the previous iteration (in

average, half of the permutations agreeing with P have i ≺ j) . Therefore, after

about log2 n! iterations, only one permutation agrees with P , thus |P | =
(
n
2

)
.775

Since, by Stirling approximation [16], log2 n! = Θ(n log n), we have that C-LOP

requires Θ(n log n) iterations in the average case. Now, by amortized analysis,

we derive the average complexity of a single iteration. Since a complete set of

precedences has cardinality
(
n
2

)
= Θ(n2), the average number of precedences

added to P in a single iteration is Θ(n
2
/(n logn)) = Θ(n/logn) = O(n). Hence,780

also the pointer to the largest entry of H is moved by no more than O(n) steps.

Furthermore, as before, the roulette wheel selection requires O(n) time. Sum-

ming up, we have Θ(n log n) iterations, each one with an average cost of O(n)

steps. As a consequence, the average case complexity of C-LOP is O(n2 log n).

34

Appendix B. Best Known results785

Instance Fitness Instance Fitness Instance Fitness

t1d100.01 106852 t1d150.10 234821 t1d200.18 407728 *

t1d100.02 105947 t1d150.11 234157 t1d200.19 412825

t1d100.03 109819 t1d150.12 236318 t1d200.20 406418

t1d100.04 109252 t1d150.13 237116 t1d200.21 408037

t1d100.05 108847 t1d150.14 234453 t1d200.22 407339 *

t1d100.06 108201 t1d150.15 232065 t1d200.23 408552

t1d100.07 108803 t1d150.16 232948 t1d200.24 410583

t1d100.08 107480 t1d150.17 236656 t1d200.25 406476 *

t1d100.09 108549 t1d150.18 234348 t1d500.01 2402576 *

t1d100.10 108755 t1d150.19 234994 t1d500.02 2411570

t1d100.11 107920 t1d150.20 235411 t1d500.03 2404784

t1d100.12 108389 t1d150.21 233956 t1d500.04 2414133 *

t1d100.13 108702 t1d150.22 235415 t1d500.05 2391486

t1d100.14 105583 t1d150.23 233492 t1d500.06 2399394

t1d100.15 108667 t1d150.24 236016 t1d500.07 2400739

t1d100.16 107426 t1d150.25 236428 t1d500.08 2413914 *

t1d100.17 105612 t1d200.01 410992 * t1d500.09 2406223

t1d100.18 107861 t1d200.02 407729 t1d500.10 2404744 *

t1d100.19 108026 t1d200.03 407223 t1d500.11 2416286

t1d100.20 109968 t1d200.04 410101 t1d500.12 2402581

t1d100.21 107255 t1d200.05 411522 t1d500.13 2405118

t1d100.22 108250 t1d200.06 406451 t1d500.14 2410693

t1d100.23 106146 t1d200.07 412482 t1d500.15 2411961 *

t1d100.24 108782 t1d200.08 408850 t1d500.16 2416067

t1d100.25 106933 t1d200.09 409308 t1d500.17 2401800

t1d150.01 234928 t1d200.10 406453 t1d500.18 2421159

t1d150.02 234421 t1d200.11 410159 t1d500.19 2404029

t1d150.03 236319 t1d200.12 412831 t1d500.20 2414713

t1d150.04 234510 * t1d200.13 409270 * t1d500.21 2405615

t1d150.05 234601 t1d200.14 408879 t1d500.22 2408164

t1d150.06 234465 t1d200.15 409061 t1d500.23 2408689

t1d150.07 235283 t1d200.16 408059 t1d500.24 2402740 *

t1d150.08 237230 t1d200.17 410280 t1d500.25 2405718

t1d150.09 237253

Table B.2: Best results obtained by CD-RVNS for the RandA1 benchmark. Boldfaced results

denote best known values, and those marked with (*) identify new best known results.

35

Instance Fitness Instance Fitness Instance Fitness

t2d100.01 25362 t2d150.01 76041 t2d200.01 147740

t2d100.02 28326 t2d150.02 73624 t2d200.02 144218

t2d100.03 25886 t2d150.03 69705 t2d200.03 141378

t2d100.04 26076 t2d150.04 73963 t2d200.04 150870

t2d100.05 25118 t2d150.05 79723 t2d200.05 150236

t2d100.06 25380 t2d150.06 75440 t2d200.06 141254

t2d100.07 27144 t2d150.07 73858 t2d200.07 149752

t2d100.08 23784 t2d150.08 67463 t2d200.08 149910

t2d100.09 27752 t2d150.09 70739 t2d200.09 141958

t2d100.10 26690 t2d150.10 69029 t2d200.10 149628

t2d100.11 25106 t2d150.11 72800 t2d200.11 147540

t2d100.12 26782 t2d150.12 72181 t2d200.12 152470

t2d100.13 27878 t2d150.13 74580 t2d200.13 137618

t2d100.14 25878 t2d150.14 68132 t2d200.14 144384

t2d100.15 24232 t2d150.15 76831 t2d200.15 140442

t2d100.16 28206 t2d150.16 72018 t2d200.16 147448

t2d100.17 26704 t2d150.17 70185 t2d200.17 131874

t2d100.18 26928 t2d150.18 73191 t2d200.18 151196

t2d100.19 28760 t2d150.19 75958 t2d200.19 137314

t2d100.20 25220 t2d150.20 67370 t2d200.20 146508

t2d100.21 24452 t2d150.21 70297 t2d200.21 143568

t2d100.22 27230 t2d150.22 69287 t2d200.22 146920

t2d100.23 25588 t2d150.23 74799 t2d200.23 145034

t2d100.24 24800 t2d150.24 70063 t2d200.24 151260

t2d100.25 23742 t2d150.25 73853 t2d200.25 149128

Table B.3: Best results obtained by CD-RVNS for the RandA2 benchmark. Results in bold

are the best values reported in the literature.

36

Instance Fitness Instance Fitness Instance Fitness

p40-01 29457 p44-11 34016 p44-41 48137

p40-02 27482 p44-12 33850 p44-42 49511

p40-03 28061 p44-13 35385 p44-43 51014

p40-04 28740 p44-14 35801 p44-44 51949

p40-05 27450 p44-15 33827 p44-45 52857

p40-06 29164 p44-16 36188 p44-46 52776

p40-07 28379 p44-17 35454 p44-47 54122

p40-08 28267 p44-18 36669 p44-48 54355

p40-09 30578 p44-19 36436 p44-49 57279

p40-10 31737 p44-20 37438 p44-50 56444

p40-11 30658 p44-21 37786 p50-01 44667

p40-12 30986 p44-22 36722 p50-02 43835

p40-13 33903 p44-23 36605 p50-03 44256

p40-14 34078 p44-24 38286 p50-04 43928

p40-15 34659 p44-25 38129 p50-05 42907

p40-16 36044 p44-26 39107 p50-06 42325

p40-17 38201 p44-27 39170 p50-07 42640

p40-18 37562 p44-28 40264 p50-08 42666

p40-19 38956 p44-29 41819 p50-09 43711

p40-20 39658 p44-30 40387 p50-10 43575

p44-01 35948 p44-31 43817 p50-11 43527

p44-02 35314 p44-32 42545 p50-12 42809

p44-03 34335 p44-33 42355 p50-13 43169

p44-04 33551 p44-34 44988 p50-14 44519

p44-05 34827 p44-35 44114 p50-15 44866

p44-06 33962 p44-36 45575 p50-16 45310

p44-07 33171 p44-37 45297 p50-17 46011

p44-08 34127 p44-38 47414 p50-18 46897

p44-09 33403 p44-39 48979 p50-19 47212

p44-10 33778 p44-40 47774 p50-20 46779

Table B.4: Best results obtained by CD-RVNS for the RandAB benchmark. Results in bold

are the best values reported in the literature.

37

Instance n = 150 n = 250

N-be75eec 3482740* 8900531*

N-be75np 7182409* 17794274*

N-be75oi 2246816* 5911016*

N-be75tot 12288727* 30967397*

N-stabu1 2873330* 7728901

N-stabu2 4327870* 11501824*

N-stabu3 4510445* 11901168*

N-t59b11xx 3239480* 8398070*

N-t59d11xx 1462418* 3839167*

N-t59f11xx 1543733* 3986281*

N-t59n11xx 318934* 824554*

N-t65b11xx 6455861* 17256477*

N-t65d11xx 3558388* 9346304*

N-t65f11xx 3156457* 8409733*

N-t65l11xx 253344* 666851*

N-t65n11xx 550569* 1429072*

N-t69r11xx 11858249* 31784901*

N-t70b11xx 9642436* 25386762*

N-t70d11xn 5820630* 15192999*

N-t70d11xx 6174178* 16027224*

N-t70f11xx 5145527* 13565303*

N-t70l11xx 436882* 1111703*

N-t70n11xx 948896* 2443448*

N-t74d11xx 9391042* 24426402*

N-t75d11xx 9639371* 25044635*

N-t75e11xx 41571407* 106699067*

N-t75k11xx 1541594* 4093582*

N-t75n11xx 1740685* 4518265*

N-tiw56n54 837155* 2096274*

N-tiw56n58 1155333* 2901784*

N-tiw56n62 1626254* 4141193*

N-tiw56n66 2107619* 5366303*

N-tiw56n67 2372805* 6318149*

N-tiw56n72 4135952* 11148631*

N-tiw56r54 957718* 2385963*

N-tiw56r58 1219043* 3060680*

N-tiw56r66 1940755* 4944620*

N-tiw56r67 2056123* 5284335*

N-tiw56r72 2823771* 7454042*

Table B.5: Best results obtained by CD-RVNS for the xLOLIB benchmark. Boldfaced results

denote best known values, and those marked with (*) identify new best known results.

38

Instance n = 300 n = 500 n = 750 n = 1000

N-be75eec 12401915* 33335021* 71335951* 122183020*

N-be75np 26058695* 66706038* 142235433 245965411*

N-be75oi 9389582* 25344958* 57446206* 95107894

N-be75tot 43728689* 113769897* 246647833* 420848949*

N-stabu70 9980631* 27206945* 58260994* 100678451*

N-stabu74 15007346* 41098727* 87467424* 151099343*

N-stabu75 15561023* 42671550* 90599301* 156432889*

N-t59b11xx 10400625* 27630465* 59760540* 101988220

N-t59d11xx 5025078* 13246941* 29824157* 50832719*

N-t59f11xx 5070127* 13437621* 29041799* 49213897*

N-t59i11xx 360306443* 936090712* 2062282459* 3471997519*

N-t59n11xx 1004921* 2610904* 5667969* 9569747*

N-t65b11xx 22149491* 59610554* 129443488* 222403731*

N-t65d11xx 11864597* 31716674* 67649620* 116725645*

N-t65f11xx 11166902* 29285209* 63208271* 108197222*

N-t65i11xx 862881768* 2244382489* 4929127538* 8390948152

N-t65l11xx 827462* 2328136* 4917873* 8668534

N-t65n11xx 1788165* 4651136* 10042759* 17044635*

N-t65w11xx 7339707255* 19371907957* 41737976722* 71696369800*

N-t69r11xx 41051301* 108552960* 235618981 397093542*

N-t70b11xx 31628508* 84271904* 181536910* 312618951*

N-t70d11xx 20804250* 55349813* 118269267* 204397975*

N-t70d11xxb 19620114* 52016871* 112175736* 193829282*

N-t70f11xx 17936682* 47857287* 103368757* 177714930*

N-t70i11xx 1347488506* 3486936667* 7611464838* 13019571398*

N-t70k11xx 2906605200* 7688243300* 16654285500* 28351747000*

N-t70l11xx 1429357* 3800456* 7870995* 14118116*

N-t70n11xx 3053791* 7949514* 16959052* 28863606*

N-t70u11xx 1054204000* 2753258600* 5936431800* 10228859000*

N-t70w11xx 11924272532* 31482656885* 68013529104* 117160728531*

N-t70x11xx 14699161134* 38846619405* 83877382884* 144521167089*

N-t74d11xx 31692802* 84276952* 180000000* 310738504*

N-t75d11xx 32626939* 86590015* 184396164* 319087189

N-t75e11xx 145044286* 374756997* 818104894* 1388110876*

N-t75i11xx 3771954709* 9733195049 21233222778* 36319330625*

N-t75k11xx 5329666* 14159503* 30431677* 52008325*

N-t75n11xx 5767516* 14882254* 31793642* 53916364*

N-t75u11xx 3081481709* 8062758937* 17292801492* 29557647434*

N-tiw56n54 2654641* 6973683* 15123184* 25823018*

N-tiw56n58 3603597* 9513598* 20633749* 35281101*

N-tiw56n62 5148045* 13560366* 29427585* 50477512*

N-tiw56n66 6673467* 17629994* 38223009* 65543988*

N-tiw56n67 7684860* 20583929* 44623467* 75645448*

N-tiw56n72 13180215* 35188140* 76855797* 130000246

N-tiw56r54 2989753* 7880480* 17095151* 29147432*

N-tiw56r58 3757785* 9956130* 21591768* 36886320*

N-tiw56r66 6179233* 16283320* 35321403* 60577648*

N-tiw56r67 6852120* 17971377* 39570834* 66272465

N-tiw56r72 8974248* 23635996* 51520889* 87558976*

N-usa79 28509942* 75962230* 157251449* 272318160

Table B.6: Best results obtained by CD-RVNS for the xLOLIB2 benchmark. Boldfaced results

denote best known values, and those marked with (*) identify new best known results.

39

	Introduction
	Related Work
	The Linear Ordering Problem: definition and properties
	LOP definition
	LOP solutions as sets of precedences
	The restricted neighborhood

	Designing a metaheuristic for the LOP: CD-RVNS
	RVNS: Variable Neighborhood Search with Restricted Neighborhood
	C-LOP: Construction heuristic procedure for LOP
	D-LOP: Destruction procedure for the LOP
	Parameters Adaptation Scheme

	Experimental Study
	Construction heuristic
	Shaking method
	Comparing to the state-of-the-art
	Bayesian statistical analysis
	Additional experiments on very large instances

	Conclusions & Future Work
	Complexity of C-LOP
	Best Known results

