
Variable Neighborhood Algebraic Differential Evolution:
an application to the Linear Ordering Problem with

Cumulative Costs

Marco Baiolettia,˚, Alfredo Milania, Valentino Santuccib

a Department of Mathematics and Computer Science, University of Perugia, Italy
b Department of Humanities and Social Sciences, University for Foreigners of Perugia, Italy

Abstract

Algebraic variants of the Differential Evolution (DE) algorithm have been re-
cently proposed to tackle permutation-based optimization problems by means
of an algebraic framework, which allows to directly encode the solutions as per-
mutations. The algebraic DE in the permutation space can be characterized
by considering different neighborhood definitions such as swapping two adja-
cent items, swapping any two items, shifting an item to a given position. Here
we propose the Variable Neighborhood Differential Evolution for Permutations
(VNDEP), which adaptively searches the three neighborhoods together based
on a method of dynamic reward. We provide an extensive and systematic anal-
ysis of the theoretical tools required in VNDEP, by studying the complexity
of the proposed algorithmic components and by introducing the possibility to
use a scale factor parameter larger than one. Experiments have been held on a
widely used benchmark suite for the Linear Ordering Problem with Cumulative
Costs, where VNDEP has been compared with four known permutation-based
DE schemes and with respect to the state-of-the-art results for the considered
instances. The experiments clearly show that VNDEP systematically outper-
forms the competitor algorithms and, most impressively, 32 new best known
solutions, of the 50 most challenging instances, have been obtained.

Keywords: Discrete Differential Evolution; Algebraic Differential Evolution;
Adaptive Differential Evolution; Linear Ordering Problem with Cumulative
Costs; Variable Neighborhood Search

1. Introduction

In this work we propose a Variable Neighborhood Algebraic Differential Evo-
lution for Permutation problems (VNDEP) by extending the DEP algorithm

˚All the authors contributed equally. Corresponding author:
Email address: marco.baioletti@unipg.it (Marco Baioletti)

Preprint submitted to Information Sciences May 26, 2020

preliminary described in [?], which in turn is based on the algebraic framework
introduced in [?].5

In this framework, the neighborhood relations among the permutations are
related to the concept of generating set, i.e., a small subset of permutations –
called generators – that, when applied to a permutation x, allow to find all the
neighbors of x. Different generating sets (thus neighborhoods) are possible for
the permutation space: in [?] the adjacent swap moves have been considered,10

while in [?] exchange and insertion moves have been used.
In [?] DEP has obtained some new best known solutions on the Linear

Ordering Problem with Cumulative Costs (LOPCC). These results have been
obtained by using multiple variants of DEP which differ from each other by
the generating set adopted. Therefore, here we are interested in investigating15

whether the choice of the generating set can be automated and adapted to the
problem at hand.

The basic idea of VNDEP is to use the three generating sets together, in a
single execution of the algorithm, by adaptively selecting them using a strategy
based on rewards assigned to the most successful generating sets during the20

evolution. The rewards assignment has been designed to take into account the
behavior usually observed in evolutionary algorithms, where it is easy to produce
an improvement in the early iterations, while it gets progressively more difficult
with the passing of the evolution.

Furthermore, the previous work [?] has a limitation related to the range of25

values allowed for the scale factor parameter. Here, we remove this limitation
by introducing, for all the three generating sets, the possibility of multiplying a
permutation by any non-negative real number. Hence, we provide a formal and
precise description of VNDEP and we systematize and extend the concepts in [?
] by presenting an analysis of the theoretical tools and algorithmic components30

required by the algebraic framework.
As a case of study, VNDEP has been experimented with the Linear Ordering

Problem with Cumulative Costs (LOPCC). The LOPCC is an NP-hard prob-
lem introduced in [?] as a cumulative variant of the LOP (Linear Ordering
Problem [?]) with important applications in the design of the mobile-phone
telecommunication systems. Given a complete digraph of n nodes with node
weights di ě 0 and arc weights cij ě 0, the LOPCC aims to find a permutation
x of the nodes that minimizes the objective function

fpxq “
n
ÿ

i“1

αxpiq (1)

where the α-costs are recursively calculated as

αxpiq “ dxpiq `
řn
j“i`1 cxpiqxpjqαxpjq for i “ n, n´ 1, . . . , 1.

(2)
VNDEP has been experimentally compared with respect to the state-of-the-

art results for the considered benchmark suite and with four variations of DE
based on the random-key technique [?], which is the most used method to deal

2

with permutation problems by means of DE. Additional experiments have been35

also conducted on widely used benchmark instances of the standard version of
the linear ordering problem.

The rest of the paper is organized as follows. Section 2 describes classical
DE, its adaptive extensions, and the discrete DE variants for permutations
available in literature. Section 3 introduces the algebraic interpretation of the40

permutations search space. The definitions of the vector-like operations are
provided in Section 4, while the proposed algorithmic components are analyzed
in Section 5. VNDEP and its adaptive mechanism is then introduced in Section
6. The experimental results are provided and discussed in Section 7, while
Section 8 concludes the paper by also providing future lines of research.45

2. Related Work

2.1. Classical Differential Evolution

Differential Evolution (DE) [?] is a simple and powerful evolutionary
algorithm for optimizing non-linear and even non-differentiable functions of the
form f : Rn Ñ R. DE evolves a population of N real-valued vectors x1, . . . , xN P50

Rn by iteratively applying the three genetic operators: differential mutation,
crossover, and selection.

The differential mutation generates a mutant yi for each individual xi. Sev-
eral mutation schemes have been proposed [? ?]. The original one is denoted
by rand/1 and it is computed as

yi “ xr1 ` F ¨ pxr2 ´ xr3q, (3)

where r1, r2, r3 are three random integers in t1, . . . , Nu mutually different
among them and with respect to i, while F ą 0 is the DE scale factor parameter.

Then, xi and yi undergo a crossover operator which produces the offspring55

zi. Many crossover schemes have been proposed, see for example [? ?]. Usually
the crossover operator is regulated by the parameter CR P r0, 1s.

The new population is then formed by means of the selection operator. The
most used is the 1-to-1 selection, i.e., each offspring zi replaces the corresponding
population individual xi if zi is fitter than xi.60

For further discussions about the design issues of DE, we refer the interested
reader to the two recent review papers [?] and [?].

The DE parameters F and CR have a great impact on the evolution, hence
there have been many proposals of adaptive DE schemes [? ? ? ? ?].

One of the most popular method is jDE [?], where every population indi-65

vidual xi has its own values Fi and CRi. The offspring zi inherits Fi from xi
with probability 0.9, otherwise a new value is randomly sampled from r0.1, 1s.
Analogously, CRi is inherited with probability 0.9, otherwise it is randomly
sampled in r0, 1s. If zi enters the new generation, it keeps its parameter values.

Another self-adaptive method is JADE [?], where F is sampled from a
Cauchy distribution and CR is sampled from a normal distribution. These two
distributions are centered on, respectively, the Lehmer and arithmetic means of

3

the F and CR values that allowed the offsprings, produced so far, to pass the
selection phase. JADE also introduces the mutation scheme current-to-pbest,
which is defined as

yi “ xi ` F ¨ pxpbest ´ xiq ` F ¨ pxr1 ´ xr2q, (4)

where xpbest is randomly chosen among the best rp ¨N s individuals, while xr1 is70

selected from the DE population, and xr2 is chosen from a set composed by the
population and an external archive A, of size N , containing the most recently
replaced individuals.

JADE has been successfully extended by SHADE [?], which samples the
DE parameters from multimodal mixture distributions. Finally, further variants75

have been proposed in [?] and [?].

2.2. Discrete Differential Evolution schemes for Permutations

Many meta-heuristics have been proposed for combinatorial optimization
problems (see for example [? ? ? ? ? ?]). Here, we briefly review the main
applications of DE to permutation problems.80

There exist DE schemes specifically tailored for a particular permutation
problem which use purposely defined ad-hoc operations, like for instance the
DE proposed in [?] for the generalized traveling salesman problem. However,
these schemes do not easily generalize to other problems. Hence, in this article
we consider the most general class of the DE schemes based on the random-key85

decoders [? ? ? ?].
The first random key decoder has been proposed in [?] in the context of

genetic algorithms. Formally, by denoting with Sn the set of permutations of
the integers in t1, . . . , nu, [?] introduces a decoder function RK : Rn Ñ Sn
which can be used by DE to optimize the objective function f : Sn Ñ R of the90

permutation problem at hand. Therefore, the only modification to the classical
DE is to consider fpRKpxqq as the fitness of x P Rn.

The decoder RK transforms x P Rn to the permutation π P Sn such
that the sequence xπp1q, . . . , xπpnq is increasingly ordered. For example, given
x “ p0.46, 0.91, 0.33, 0.75, 0.51q, its corresponding permutation is π “ RKpxq “95

x3, 1, 5, 4, 2y. Therefore, RK requires to sort the component indexes of x with
respect to their corresponding values.

Also a simple variant of RK has been considered in literature [? ?]. In
this variant, a vector x P Rn is decoded to the permutation ρ P Sn such that
ρpiq “ ri, where ri is the rank of xi among the vector components x1, . . . , xn100

sorted in ascending order. Using the numeric vector of the previous example, ρ “
x2, 5, 1, 4, 3y. It is easy to see that the permutation ρ is the inverse permutation
of π, i.e., ρ “ π´1, and vice versa. Hence, though not explicitly reported in
literature, this decoding scheme, to which we refer with RKI, can be obtained
by inverting the result of RK, i.e., RKIpxq “ pRKpxqq

´1
.105

2.3. DE schemes based on algebraic principles

Few DE variants based on algebraic principles have been proposed in liter-
ature.

4

A general algebraic framework has been introduced in [?] and [?], where
the algebraic DE has been applied to the permutation flowshop scheduling prob-110

lem (PFSP). This algorithm constrains the scale factor in the interval r0, 1s and
uses adjacent swap moves to search in the permutation space of the PFSP. The
same algorithm has also been applied to the linear ordering problem (using
the standard objective function formulation) in [?] and [?]. Algebraic DEs
which use exchange and insertion moves for the permutation space have been115

introduced in [?] for solving the linear ordering problem with cumulative costs.
Moreover, a multiobjective variant has been applied in [?] to the multiobjective
PFSP, while the same algebraic framework has been adopted in [?] to search
in the space of directed acyclic graphs for learning the structure of a Bayesian
network. Finally, a binary variant of the algebraic DE has been introduced in120

[?] and applied to the multidimensional number partitioning problem.
Following a different line of research, a group-theory based DE has been

recently proposed in [?] with application to knapsack problems.

3. Algebraic Interpretation of the Permutations Search Space

In many combinatorial optimization problems, the set of discrete solutions125

X is naturally endowed with a composition operator, i.e., there exists a binary
operation ‹ such that, given two solutions x, y P X, x‹y is again a valid solution.
Often, X and ‹ satisfy the group properties [? ?]. Though a variety of discrete
search spaces of practical interest, like for instance the spaces of bit-strings and
integer vectors [?], fall into this category, in this article we focus our attention130

on the space of permutations.
The set Sn of the n! permutations of rns “ t1, 2, . . . , nu forms a group with

respect to the permutation composition ˝: given x, y P Sn, their composition
x˝y is defined as the permutation px˝yqpiq “ xpypiqq, for all the indexes i P rns.

The group structure allows to characterize the geometry of the search space135

and to describe the search moves.
The rest of this section is devoted to introducing the mathematical concepts

used later on.

3.1. The Symmetric Group and its Generating Sets

Sn and the composition operator ˝ : Sn ˆ Sn Ñ Sn form the so-called140

symmetric group. We denote by e “ x1, 2, . . . , ny the identity permutation,
which is the neutral element of Sn, and by x´1 P Sn the inverse of any x P Sn.

There exist different subsets H Ď Sn such that any x P Sn can be written
as a composition of the permutations in H, i.e., x “ h1 ˝ h2 ˝ ¨ ¨ ¨ ˝ hl for
some h1, h2, . . . , hl P H. Hence, Sn is said to be finitely generated by the145

generating set H, while the sequence xh1, h2, . . . , hly is a decomposition of x,
and the permutations in H are called generators.

In this article we focus on three generating sets of Sn, denoted by ASW ,
EXC , and INS , which are particularly useful because they encode in the al-
gebraic language the elementary moves usually considered in the permutations150

space (see for example [? ?]). Their definitions and properties are as follows.

5

• ASW “ tσi : 1 ď i ă nu, where σi is the identity permutation with the
items i and i ` 1 exchanged (e.g., in S5, σ2 “ x13245y). These genera-
tors correspond to the adjacent swap moves because, given x P Sn, the
permutation x ˝ σi is obtained from x by swapping the adjacent items at155

positions i and i` 1.

• EXC “ tεij : 1 ď i ă j ď nu, where εij is the identity permutation
with the items i and j exchanged (e.g., in S5, ε14 “ x42315y). These
generators correspond to the exchange moves because, the permutation
x ˝ εij is obtained from x by exchanging the items at positions i and j.160

• INS “ tιij : 1 ď i ‰ j ď nu, where ιij is the identity permutation with the
item i shifted to position j (e.g., in S5, ι14 “ x23415y). These generators
model the insertion moves because, the permutation x ˝ ιij is obtained
from x by shifting the i–th item to position j.

Their cardinalities are: |ASW | “ n ´ 1, |EXC | “
`

n
2

˘

, and |INS | “ pn ´ 1q2.165

All the generating sets are closed with respect to inversion because σ´1
i “ σi,

ε´1
ij “ εji, and ι´1

ij “ ιji. Moreover, ASW Ď EXC and ASW Ď INS hold.
For the sake of clarity, in the rest of the paper, we denote with H the set
tASW ,EXC , INSu.

Given a generating set H P H, a decomposition xh1, h2, . . . , hly of any x P Sn170

is minimal if, for any other decomposition xh11, h
1
2, . . . , h

1
my of x, we have l ď m.

Although minimal decompositions are not unique in general, they allows to
define the weight |x| as the length l of the minimal decompositions of x in terms
of H.

Independently from the generating set, the minimal-weight permutation is175

always the identity e whose weight is |e| “ 0. Furthermore, since Sn is finite,
for any possible generating set H there exists a non-empty set ΩH of maximal-
weight permutations.

Finally, for any H P H, minimal decompositions allow also to define a partial
order on Sn. Given x, y P Sn, we write x Ď y if, for each minimal decomposition180

sx of x, there exists a minimal decomposition sy of y such that sx is a prefix of
sy.

3.2. The Cayley Graph of Permutations

The triple pSn, ˝, Hq, with H P H, can be geometrically associated to the
Cayley graph CpSn, ˝, Hq, i.e., the labeled digraph whose vertices are all the185

permutations in Sn and there is an arc from x to y labeled by h P H if and only
if y “ x ˝ h.

It is easy to prove that, for any possible sequence of generators s and for
any permutation x P Sn, CpSn, ˝, Hq has exactly one path which starts from the
vertex x and whose arcs are labeled according to s. Moreover, for all x P Sn,190

each directed path from the identity e to x corresponds to a decomposition
of x, i.e., if the arc labels occurring in the path are xh1, h2, . . . , hly, then x “
h1 ˝ h2 ˝ ¨ ¨ ¨ ˝ hl. As a consequence, shortest paths from e to x correspond to

6

minimal decompositions of x, i.e., if e
h1
ÝÑ x1

h2
ÝÑ x2

h3
ÝÑ ¨ ¨ ¨

hl
ÝÑ xl is one of

the shortest paths in CpSn, ˝, Hq, then, for any integer i P r1, ls, xh1, . . . , hiy is195

a minimal decomposition of xi and |xi| “ i. Moreover, given x, y P Sn, x Ď y if
and only if there exists at least one shortest path from e to y passing by x.

More generally, for all x, y P Sn, any path from x to y in CpSn, ˝, Hq has an
algebraic interpretation: if the arc labels in the path are xh1, h2, . . . , hly, then
x ˝ ph1 ˝ h2 ˝ ¨ ¨ ¨ ˝ hlq “ y. Hence, xh1, h2, . . . , hly is a decomposition of x´1 ˝ y.200

In particular, shortest paths correspond to minimal decompositions.
Furthermore, the diameter D of CpSn, ˝, Hq is equal to the maximum weight,

i.e., D “ |ω| for any ω P ΩH . The diameter for ASW is
`

n
2

˘

, while it is n ´ 1
for both EXC and INS [?].

4. Vector-like Operations on Permutations205

In this section, we present the vector-like operations ‘, a, and d that sim-
ulate in a meaningful way their numerical counterparts. This, in turn, will
allow to consistently redefine the mutation operator of Differential Evolution to
directly work with permutations.

The key observation is the dichotomous interpretation of a permutation.210

From Section 3, any x P Sn can be decomposed and seen as a sequence of
generators, hence x corresponds to a sequence of arc labels in several paths of
the Cayley graph. This observation is crucial, because the permutations can
be seen both as points, i.e., vertexes in the Cayley graph, and as vectors1, i.e.,
sequences of generators in shortest paths of the Cayley graph.215

4.1. Addition and Subtraction for Permutations

The addition z “ x ‘ y is defined as the application of the vector y P Sn
to the point x P Sn. Hence, z can be computed by choosing a decomposition
xh1, h2, . . . , hly of y and by finding the end-point of the path which starts from
x and whose arc labels are xh1, h2, . . . , hly, i.e., z “ x ˝ ph1 ˝ h2 ˝ ¨ ¨ ¨ ˝ hlq. Since
h1 ˝ h2 ˝ ¨ ¨ ¨ ˝ hl “ y, the addition ‘ is independent from the generating set and
is uniquely defined as

x‘ y :“ x ˝ y. (5)

Continuing the analogy with the Euclidean space, the difference between two
points is a vector. Given x, y P Sn, the difference yax produces the sequence of
labels xh1, h2, . . . , hly in a path from x to y. Since h1˝h2˝¨ ¨ ¨˝hl “ x´1˝y, we can
replace the sequence of labels with its composition, thus making the difference
independent from the generating set. Therefore, a is uniquely defined as

y a x :“ x´1 ˝ y. (6)

Though not commutative, both ‘ and a, like their numerical counterparts,
are consistent with each other, i.e., x‘ py a xq “ y for all x, y P Sn. Moreover,
the identity e is their neutral element.

1With “vector” we intend “free vector”, i.e., a vector without point of application.

7

4.2. Scalar Multiplication for Permutations220

Again, as in the Euclidean space, it is possible to multiply a vector by a
non-negative scalar in order to stretch its length.

Given a ě 0 and x P Sn, we denote their multiplication with a d x and we
first identify the conditions that the permutation adx has to verify in order to
simulate, as much as possible, the scalar multiplication of vector spaces:225

(C1) |ad x| “ ra ¨ |x|s;

(C2) if a P r0, 1s, ad x Ď x;

(C3) if a ě 1, x Ď ad x.

Clearly, the scalar multiplication of Rn satisfies a slight variant of (C1) where the
Euclidean norm replaces the group weight and the ceiling is omitted. Besides,230

similarly to scaled vectors in Rn, (C2) and (C3) intuitively encode the idea that
ad x scales, respectively, down or up the permutation x.

It is important to note that, fixed a and x, there may be more than one
result satisfying (C1–C3). This is a clear consequence of the non-uniqueness of
minimal decompositions. Therefore, we denote with ad x a randomly selected235

permutation satisfying (C1–C3).
Note also that the diameter D induces an upper bound on the possible

values for the scalar a. For any x P Sn, let ax “
D
|x| , if a ą ax, (C1) would imply

|ad x| ą D that is impossible. Therefore, we define

ad x :“ ax d x, when a ą ax. (7)

For the sake of clarity, we separately define the operation a d x for a P240

r0, 1s and for a ą 1. Both cases employ an abstract procedure which returns a
randomly selected minimal decomposition of the permutation in input.

When a P r0, 1s, ad x is computed by taking a minimal decomposition of x,
truncating it after ra ¨ |x|s generators, and composing the truncated sequence.
Therefore, both (C1) and (C2) are satisfied. Moreover, when a “ 1, ad x “ x.245

This satisfies both (C2) and (C3). Note also that, due to the ceiling in condition
(C1) and similarly to the Euclidean case, a “ 0 is the unique scalar such that
ad x “ e for all x P Sn.

When a ą 1, the condition (C3) can be satisfied if and only if, for the chosen
generating set H, there exists a permutation ω P ΩH such that x Ď ω. In this250

case, by also letting l “ |x|, there exists a shortest path from e to ω passing by x

such as e
h1
ÝÑ ¨ ¨ ¨

hl
ÝÑ xl

hl`1
ÝÝÝÑ ¨ ¨ ¨

hk
ÝÑ xk

hk`1
ÝÝÝÑ ¨ ¨ ¨

hD
ÝÝÑ ω, where xl “ x. Hence,

for the Cayley graph properties, (C1) and (C3) are satisfied by setting adx “ xk,
with k “ ra ¨ ls. Anyway, it is possible to make the computation more efficient
by exploiting that ad x “ ph1 ˝ ¨ ¨ ¨ ˝ hlq ˝ phl`1 ˝ ¨ ¨ ¨ ˝ hkq “ x ˝ phl`1 ˝ ¨ ¨ ¨ ˝ hkq,255

thus only the sub-path from x to ω, which forms a minimal decomposition
of ω a x “ x´1 ˝ ω, needs to be found. Exploiting also the property that
|x|`|ωax| “ D, adx can be computed by: (i) taking a minimal decomposition

8

s of ωax, (ii) truncating s after rD´|ωax|s generators obtaining the sequence
s1, and (iii) computing x ˝ s1.260

Their implementations mainly require a randomized decomposition algo-
rithm for the chosen generating set.

5. Randomized Decomposition Algorithms

Here we provide the last building blocks required to implement the differ-
ential mutation equation in order to work with permutations: the randomized265

decomposition algorithms for the three generating sets ASW , EXC , and INS .
Note that decomposing a permutation x P Sn geometrically corresponds

to finding the generators in a shortest path from e to x in the Cayley graph
induced by the chosen generating set. However, since the items in e are in
ascending order, it is more convenient to proceed in the opposite direction and270

then apply a simple algebraic transformation. Hence, the general scheme to
obtain a decomposition of x is:

1. sort the items in x by using a minimal sequence s of adjacent swaps (in
the ASW case), or exchanges (in the EXC case), or insertions (in the INS
case);275

2. reverse s and invert each generator, i.e., let s “ xh1, h2, . . . , hl´1, hly, then
xh´1
l , h´1

l´1, . . . , h
´1
2 , h´1

1 y is a minimal decomposition of x.

Since we need a random minimal decomposition, the sorting stage at point
1 has to iteratively choose a random generator (that is, an elementary move)
among those that bring the incumbent permutation closer to e.280

In the rest of this section we describe, for each generating set, the corre-
sponding randomized decomposition algorithm and the mechanisms required to
multiply by a scalar greater than 1. Moreover, the computational complexity
of the provided algorithmic procedures is analyzed in the worst-case scenario.
Anyway, by considering that the expected weight of a randomly chosen permu-285

tation differs by a constant with respect to the weight of the maximal weight
permutation, the same conclusions also apply to the average-case scenario.

5.1. Decomposition based on ASW generators

In order to introduce the ASW randomized decomposition algorithm, namely
RandBS , we require the concept of inversion.290

Given x P Sn, an ordered pair pi, jq is an inversion of x if and only if i ă j and
xpiq ą xpjq. The identity e is the unique permutation without inversions, thus
the number of inversions, in a generic x P Sn, is a measure of the “unsortedness”
of x. Moreover, if x has a non-empty set of inversions, then x has at least an
inversion of the form pi, i`1q, i.e., an adjacent inversion. It is easy to show that,295

considering the generating set ASW : (1) |x| equals the number of inversions of
x, and (2) the inversion pi, i` 1q can be removed from x by composing it with
the generator σi P ASW .

9

1: function RandBS(x P Sn)
2: sÐ x y Ź s is an empty sequence of generators
3: AÐ tσi P ASW : xpiq ą xpi` 1qu
4: while A ‰ H do Ź A ‰ H if and only if x ‰ e
5: σ Ð select a generator from A uniformly at random
6: xÐ x ˝ σ
7: sÐ Concatenateps, xσyq
8: AÐ UpdatepA, σq Ź This step has Op1q complexity

9: sÐ Reversepsq Ź s is now a minimal decomposition of x
10: return s

Figure 1: Randomized decomposition algorithms for ASW

Since the classical bubble-sort algorithm is known to sort a permutation
using the minimal number of adjacent swaps, RandBS , previously introduced300

in [? ?], is implemented as a randomized variant of bubble-sort.
Its pseudo-code is provided in Figure 1. The set A (line 3) maintains the

generators corresponding to the adjacent inversions of the incumbent permuta-
tion x. Then, x is iteratively sorted by applying a random generator from A
(lines 5 and 6) which is appended to s (line 7). A is efficiently updated (line305

8) by considering that σi removes the adjacent inversion pi, i` 1q and can only
influence the two other adjacent inversions pi ´ 1, iq and pi ` 1, i ` 2q. Lastly,
by considering that σ´1 “ σ for all σ P ASW , reversing s (line 9) produces a
minimal decomposition of the permutation in input. Since the diameter induced
by ASW is

`

n
2

˘

, RandBS has a worst-case complexity of Θpn2q.310

5.2. Maximal-weight permutation for ASW

In order to implement the multiplication for a scalar a ą 1, the general
scheme presented in Section 4.2 can be applied by considering that ASW has
a unique maximal-weight permutation ω such that x Ď ω for all x P Sn. The
permutation ω is the reversed identity, i.e., ω “ xn, n´ 1, . . . , 1y.315

5.3. Decomposition based on EXC generators

In order to introduce the EXC randomized decomposition algorithm, namely
RandSS , we require the concept of cycle.

A k-cycle of x P Sn is a sequence of k items pi0, . . . , ik´1q such that, for any
0 ď j ă k, x

`

ipj´1q mod k

˘

“ ij . Any permutation can be uniquely represented320

by its cycle structure, e.g., x26745831y “ p1268qp37qp4qp5q. The identity e is the
unique permutation with n cycles (of length 1), thus the number of cycles mea-
sures the “sortedness” of a permutation. Moreover, considering the generating
set EXC , |x| equals n´#cyclespxq, for any x P Sn.

Note that if two items ia and ib belonging to the same cycle pi1, . . . , ia, . . . , ib, . . . , ikq325

are exchanged, the cycle is split into the two smaller cycles pi1, . . . ia´1, ib, . . . , ikq
and pia, . . . , ib´1q. Therefore, RandSS iteratively sorts a permutation by apply-
ing a suitable exchange at every iteration.

Its pseudo-code is provided in Figure 2. The cycle structure of x at line 3
is computed in time Θpnq. The cycle weights wi have been introduced in order330

to uniformly sample εij among all the suitable exchanges (lines 7,8). Indeed,

10

1: function RandSS(x P Spnq)
2: sÐ x y Ź s is an empty sequence of generators
3: cÐ getCyclespxq Ź ci is the ith cycle of x; cij is the jth item of cycle ci
4: for iÐ 1 to lenpcq do
5: wi Ð lenpciqplenpciq ´ 1q{2 Ź weight of cycle ci
6: while lenpcq ă n do
7: cr Ð randomly choose a cycle through a roulette wheel basing on the weights wi
8: i, j Ð uniformly choose a pair of indexes from the cycle cr
9: xÐ x ˝ εij

10: sÐ Concatenateps, xεijyq
11: cÐ Updatepc, wq

12: sÐ ReverseInvertpsq Ź s is now a minimal decomposition of x
13: return s

Figure 2: Randomized decomposition algorithm for EXC

any k-cycle can be broken by using
`

k
2

˘

different exchanges (line 5). After the
generator εij is chosen, it is applied to x and appended to s (lines 9,10). Then,
in line 11, the cycle structure is efficiently updated by replacing cr with the
longer between the two new sub-cycles, and appending the shorter at the end of335

the list. The loop at lines 6–11 performs no more than n´ 1 iterations and, by
amortized analysis, the whole loop has a worst-case complexity of Θpnq. Since
also the “reverse and invert” step of line 12 has linear complexity, RandSS costs
Θpnq in the worst case.

It is also interesting to note that RandSS generalizes the classical selection-340

sort algorithm. Indeed, it can be shown that selection-sort (when applied to
permutations) works similarly to RandSS but with some limitations: it always
breaks the cycle containing the smallest out-of-place item, and it always divides
that k-cycle into two cycles of lengths 1 and k ´ 1.

5.4. Maximal-weight permutations for EXC345

In order to implement the multiplication by a scalar a ą 1, note that ΩEXC

is formed by all the cyclic permutations, i.e., the permutations with only one
cycle. However, given x P Sn, we need a procedure to compute an ω P ΩEXC

such that x Ď ω. With this aim, it is possible to proceed by iteratively merging
two cycles of x until reaching a suitable cyclic permutation with the desired350

property. It turns out that two different cycles c1, c2 of a permutation can be
merged by exchanging an item from c1 with an item from c2. Therefore, a
procedure very similar to RandSS , and called MergeCycles, is devised.

Its pseudo-code is provided in Figure 3. In order to save computational time
with respect to the general scheme described in Section 4.2, MergeCycles takes355

in input also the scalar a ą 1 and directly computes the multiplication a d x.
Indeed, since a d x is in the path from x to the ω that we are computing, we
simply need to stop the main loop when the number of cycles of the incumbent
permutation is ra ¨ |x|s (see line 6). Furthermore, since the procedure in line 11
can be efficiently computed without considering the order of the items inside360

the cycles, the cost of MergeCycles is Θpnq in the worst case.

11

1: function MergeCycles(a ą 1,x P Spnq)
2: cÐ getCyclespxq Ź ci is the ith cycle of x; cij is the jth item of cycle ci
3: for iÐ 1 to lenpcq do
4: wi Ð lenpciq Ź weight of cycle ci
5: z Ð x
6: while |z| ă ra ¨ |x|s do Ź |x| is equivalent to the number of cycles of x
7: ci, cj Ð randomly choose two different cycles basing on their weights
8: iÐ randomly choose an item from ci
9: j Ð randomly choose an item from cj

10: z Ð z ˝ εij
11: Mergepci, cjq

12: return z Ź z “ ad x

Figure 3: Multiplication by a scalar a ą 1 for the EXC generating set

5.5. Decomposition based on INS generators

In order to introduce the INS randomized decomposition algorithm, namely
RandIS , we require the concept of longest increasing subsequence (LIS).

Given x P Sn, an increasing subsequence of x is a sequence of items pi1, i2, . . . , ikq365

such that ij ă ij`1 and x´1pijq ă x´1pij`1q, for all 1 ď j ă k. Then, a LIS
is an increasing subsequence of x of maximal length. A LIS of x is not unique
in general, however, the identity e is the only permutation with a single LIS of
maximal length n, thus the LIS-length measures the “sortedness” of a permu-
tation. Moreover, considering the generating set INS , |x| “ n ´ LIS-lengthpxq370

for any x P Sn.
Note that any LIS of a given permutation x can be extended by applying

to x an insertion corresponding to a generator ιij P INS , such that: xpiq is
an item not appearing in the LIS, and j is taken from rjmin , jmax s with jmin

(jmax) indicating the position of the greatest (smallest) item of the LIS that is375

smaller (greater) than xpiq. For example, let x “ x26745831y and choose the
LIS p2458q, then x ˝ ι72 shifts the item xp7q “ 3 to position 2 in x. Thus, the
new permutation is x ˝ ι72 “ x23674581y and its LIS is p23458q. Hence, the LIS
has been effectively extended with one more item.

RandIS , presented in Figure 4, randomly computes a LIS of the input per-380

mutation, and iteratively applies a random insertion that extends the LIS.
The random LIS L is computed at line 3 by using a simple stochastic variant

of the algorithm provided in [? , Sec. 2]. Its complexity is Opn log nq. The set
U (line 4) is formed by the items not appearing in L and that need to be
iteratively shifted “into” L. In order to uniformly sample ιij among all the385

suitable insertions (lines 9–11), any item in U is weighted by the number of
suitable insertions in which it is involved (lines 5–7). At every iteration of the
main loop, the generator ιij is chosen, applied to x and appended to s (lines
9–13). The loop stops when lenpLq “ n, U “ H and x “ e, therefore no more
than n ´ 1 iterations are performed. The most costly operations of the loop390

are the updates at lines 14 and 15. However, since the sets PLx,k are actually
intervals, only their end-points need to be maintained, hence the updates, as
also the last “reverse and invert” step of line 16, can be done in linear time.
Finally, since no more than n´ 1 iterations are required, the overall complexity
of RandIS is Θpn2q in the worst case.395

12

1: function RandIS(x P Spnq)
2: sÐ x y Ź s is an empty sequence of generators
3: LÐ getRandomLISpxq
4: U Ð t1, . . . , nuzL Ź Set of items not appearing in L
5: for all k P U do
6: PLx,k Ð set of positions in x where it is possible to shift item k in order to extend L

7: wk Ð |PLπ,k| Ź weight of item k

8: while lenpLq ă n do
9: r Ð randomly choose an item in U through a roulette wheel basing on the weights wk

10: iÐ x´1
prq Ź The position of r in x

11: j Ð randomly choose a position from PLx,r
12: xÐ x ˝ ιij
13: sÐ Concatenateps, xιijyq
14: UpdatepL,Uq

15: UpdatepPLx,k, wkq for any k P U

16: sÐ ReverseInvertpsq Ź s is now a minimal decomposition of x
17: return s

Figure 4: Randomized decomposition algorithm for INS

It is also interesting to note that RandIS generalizes the classical insertion-
sort algorithm. Indeed, insertion-sort iteratively extends the increasing subse-
quence maintained at consecutive indexes in the leftmost part of the permuta-
tion, while RandIS allows to spread the increasing subsequence anywhere in the
permutation.400

5.6. INS approximate multiplication by a ą 1

In order to implement the multiplication by a scalar a ą 1 for the INS
generating set, we could be tempted to consider the unique maximal-weight
permutation ω “ xn, n ´ 1, . . . , 1y and use the general scheme described in
Section 4.2. It is easy to see that ω has a minimal LIS-length of 1 and that, for405

any x P Sn, |x| “ n´LIS-lengthpxq. Hence, when a ą 1, since adx has to move
x closer to ω, we need to find insertions that reduce the LIS-length of x but,
unfortunately, there exists permutations where this is impossible. For instance,
it is easy to show that none of the 9 insertions of S4 reduce the LIS-length of
the permutation x2413y. This issue is a consequence of the non-uniqueness of410

the LISs. In other words, it means that not all the permutations x P Sn satisfy
the requirement x Ď ω, thus conditions (C1) and (C3) cannot be satisfied at
the same time.

However, we can consider the concept of longest decreasing subsequence
(LDS). The LDS is somehow antipodal to the LIS, i.e., given x P Sn, a decreas-415

ing subsequence of x is a sequence of items pi1, i2, . . . , ikq such that ij ą ij`1 and
x´1pijq ă x´1pij`1q, for all 1 ď j ă k. Analogously to the LIS case, there al-
ways exists an insertion that increases the LDS-length of a generic permutation.
Anyway, in this case the permutation gets closer to ω.

Using this observation, it is possible to directly employ RandIS to implement420

the approximate multiplication by a ą 1. The weight |x| “ n´LIS-lengthpxq in
condition (C1) is replaced with the surrogate weight |x|˚ “ LDS-lengthpxq ´ 1.
Note that |ω|˚ “ |ω| “ n ´ 1, |e|˚ “ |e| “ 0, and, more generally, |x|˚ is
a non-strict monotone transformation of |x| that, conversely from the latter,

13

can be increased by a suitable insertion. Therefore, we can iteratively apply425

an insertion that increases |x|˚. Finally, let sR be the reverse of a sequence
s, for all x P Sn, a LDS of x can be obtained by reversing a LIS of xR, i.e.,
LDSpxq “ pLISpxRqqR. Therefore, an insertion ιij increases the LDS-length of
x if and only if the insertion ιn`1´i,n`1´j increases the LIS-length of xR.

6. Variable Neighborhood Algebraic Differential Evolution for Per-430

mutations

Based on the previously presented algebraic tools, here we introduce the
Variable Neighborhood Algebraic Differential Evolution for Permutations (VN-
DEP). Its main scheme is provided in Figure 6 and follows the general scheme
of classical DE (see Section 2.1).435

1: function VNDEP
2: Initialize Population x1, . . . , xN
3: while evaluations budget is not exhausted do
4: for iÐ 1 to N do
5: Choose the scale factor F and the crossover strength CR
6: Choose the generating set H and the crossover operator C
7: yi Ð DifferentialMutationpi, F,Hq
8: zi Ð Cpxi, yi, CRq
9: Evaluate fpziq

10: for iÐ 1 to N do
11: xi Ð Selectionpxi, ziq

12: if restart criterion is verified then
13: Restart the Population

14: return the best permutation found

Figure 5: Differential Evolution for Permutations

VNDEP aims to minimize a given objective function f : Sn Ñ R by iter-
atively evolving a population of N permutations. The evolution is performed
by means of the three genetic operators: differential mutation, crossover, and
selection. The DE key operator, i.e., the differential mutation, is designed by
exploiting the algebraic concepts previously presented. Two variants of widely440

used crossover schemes for permutations are considered, while the one-to-one
selection works as in classical DE.

VNDEP is endowed with adaptive mechanisms that self-regulate its param-
eters: the scale factor F , the crossover strength CR, the generating set H , and
the crossover scheme C . Therefore, the population size N needs to be set. Fi-445

nally, the diversity loss phenomenon, typical of combinatorial problems [?], is
mitigated by introducing a restart procedure.

All the VNDEP components are described in the following sections.

6.1. Algebraic Differential Mutation

The algebraic differential mutation operator is designed by exploiting the450

algebraic concepts previously presented.
Hence, it is possible to rewrite any differential mutation strategy of the

classical DE by using the vector-like operations introduced in Sections 4 and 5.

14

For example, rand/1 (see Equation (3)) for the i–th population individual can
be rewritten to directly work with permutations as

yi “ xr1 ‘ F d pxr2 a xr3q (8)

where, as in classical DE, the scale factor F ą 0 regulates the strength of the
mutation, while r1, r2, r3 are three indexes in t1, . . . , Nu different from each
other and from i. For the properties described in Sections 3 and 4, this dis-
crete operation simulates, in the Cayley graph of permutations, the geometric455

properties of its continuous counterpart.
By taking inspiration from the external archive introduced in [?], VN-

DEP uses a new variant of rand/1 where xr3 is randomly sampled from the
set ptx1, . . . , xNuztxi, xr1 , xr2uq Y A. A is the external archive that contains
the most recently discarded (by the selection) population individuals. A has460

maximum size N as the main population and, when it is full, the last discarded
solution from the main population replaces a random element of A. The aim of
the external archive is to increase the diversity of the mutants produced by the
differential mutation scheme.

Furthermore, differently from the continuous case, for any mutation strategy465

there are three possible implementations that depend on the chosen generating
set H P H. In principle, any single application of the differential mutation can
use a different generating set. Hence, the adaptive scheme described in Section
6.3 is used to automatically select H during the evolution.

6.2. Crossovers for Permutations470

We consider two popular crossovers for the permutation representation,
namely, the position based crossover POS [?] and the two point crossover
TPII [?].

Let x, y P Sn denote, respectively, the parent and mutant permutations that
have to be recombined, then both POS and TPII select a random subset of475

positions P Ď rns and build an offspring z P Sn by: (1) setting zpiq Ð ypiq for
any i P P , and (2) inserting the remaining items starting from the leftmost free
place of z and following the order of appearance in x.

The difference between POS and TPII is in the way the set P is built: P is
an interval of consecutive positions in TPII , while it can be any subset in POS480

.
Furthermore, both POS and TPII have been modified in order to introduce

the DE parameter CR P r0, 1s. The modified variants, namely POSCR and
TPII CR, constrain the size of P to |P | “ rCR ¨ ns.

It is interesting to note that POSCR and TPII CR can be seen as feasible485

variants, for the permutation representation, of, respectively, the binomial and
exponential crossovers of classical DE.

We denote by C the set of crossover operators

POSCR,TPII CR
(

, and, in
Section 6.3, we describe an adaptive scheme that allows to automatically select
a crossover C P C during the evolution.490

15

6.3. Adaptive schemes

By recalling that H “ tASW ,EXC , INSu and C “

POSCR,TPII CR
(

,
VNDEP self-regulates four parameters: F ą 0, CR P r0, 1s, H P H, and C P C.

For F and CR it is possible to use any one of the numerical DE adaptive
schemes already proposed in literature (see Section 2.1). However, due to the495

different characteristics of continuous and combinatorial spaces, it is not guar-
anteed that good adaptive schemes for numerical problems are also good for
permutation problems. Hence, we have conducted some preliminary experi-
ments in order to compare SHADE and jDE. The results clearly indicate that
jDE [?] has to be preferred in our case. Moreover, we also observed that a500

value F ą 1 is beneficial to the search, in particular when the population starts
to stagnate. Therefore, we have used the jDE scheme described in Section 2.1
with a slight modification: F is sampled from the extended interval r0.1, 1.25s,
thus a difference in the differential mutation can be, not only scaled down, but
also extended till the 125% of its length.505

Conversely, H and C are separately adapted by means of a novel scheme
based on dynamic rewards to which we refer as REW-adaptation. In the fol-
lowing we describe the application of REW-adaptation to H. The case of C is
analogous.

REW-adaptation returns a different generating set H (and a crossover op-510

erator C) for any individual according to a probabilistic choice.
For any H P H, two values are maintained during the evolution: the accu-

mulated reward arH , and the number mH of times that H has been chosen.
Hence, the expected reward for H is defined as rH “ arH{mH . Then, a proba-
bility distribution on H is generated by a mixture between a softmax function
[?] and a uniform distribution. Formally, the probability of choosing H is
given by

pH “ p1´ ηq
erH

ř

H1PH e
rH1

` η
1

|H|
. (9)

The softmax part exponentially amplifies the differences in terms of expected
rewards among the generating sets, while the uniform part assigns a small chance
to be selected to any generating set, thus avoiding the irreversible situation
of a single generating set with all the probability mass. The parameter η P515

r0, 1s regulates the importance of the uniform distribution in the mixture. We
empirically chose to set η “ 0.1.

Furthermore, at the end of every iteration, mH is incremented for every use
of H, while a reward is assigned for any successful application of a generating set.
Indeed, when a trial individual, produced by means of H, passes the selection,520

a reward rit is assigned to H, i.e., arH Ð arH ` rit .
The reward is dynamically assigned as rit “ it ¨ s according to the iteration

number it and to a scaling factor s that has been experimentally set to the
constant value s “ 0.1. It is important to note that this scheme assigns a
greater reward to later improvements. This choice is motivated by the behavior525

observed in all the evolutionary algorithms, where it is easy to produce an

16

improvement in earlier iterations, while it gets progressively more difficult as
the evolution goes on.

6.4. Restart procedure

Since the permutations space is finite, the chances that the population con-530

stantly looses diversity and finally converges to a super-individual, i.e., a popula-
tion composed by N copies of the same permutation, are not negligible. Ignoring
the external archive in the following analysis, it is easy to see that, in VN-
DEP, when the population has converged to a super-individual, the offsprings
produced by mutation and crossover are again equal to the super-individual.535

Hence, the evolution gets stuck.
The external archive introduced in Section 6.1 mitigates in part this problem,

but we empirically observed that a more drastic solution is sometimes required.
Therefore, we introduce a restart mechanism that is executed when all the
individuals have the same fitness (which is roughly equivalent to check for a540

super-individual, but with a smaller computational cost). Then, the restart
procedure replaces, with randomly generated permutations, all the individuals
except one. Furthermore, the external archive A is emptied and the REW-
adaptation variables arH and mH are reset.

7. Experiments545

Experiments have been held on commonly adopted benchmark suites for
LOPCC: UMTS (100 instances with n “ 16), LOLIB (44 instances with 44 ď
n ď 60), and RND (three sets of 25 instances of size 35, 100, and 150). All the
instances are available at www.optsicom.es/lopcc.

In order to verify the effectiveness of our proposal with respect to classical550

DE schemes for permutation problems, VNDEP has been compared with the
two DE variants jDE and SHADE endowed with both the permutation-based
decoder functions RK and RKI. Therefore, we have experimentally compared
the following five algorithms: VNDEP, jDE-RK, jDE-RKI, SHADE-RK, and
SHADE-RKI. The results of this comparison are provided and discussed in555

Section 7.1.
The best results obtained by VNDEP are further analyzed in Section 7.2

where a comparison with state-of-the-art results is provided. It is important to
note that, in this way, VNDEP is implicitly compared with respect to all the
algorithms which have successfully approached the problem [? ? ? ? ?].560

Finally, additional experiments are described in Section 7.3. Here, the aim
is twofold: analyzing the performance differences of VNDEP with respect to the
previous non-adaptive DEP implementations, and studying the effectiveness of
VNDEP on the well known instances of the Linear Ordering Problem (LOP)
without cumulative costs.565

17

7.1. Comparison with random-key DEs

The aim of this section is to compare VNDEP with respect to the four
random-key based DE schemes jDE-RK, jDE-RKI, SHADE-RK, and SHADE-
RKI (see Section 2).

In all the five algorithms, only the population size N requires to be set. In570

order to perform a fair comparison, N has been separately tuned for each algo-
rithm. A variety of tools and techniques for parameter tuning can be adopted
like, for instance, iRACE [?] and SMAC [?]. In this work, we have used
SMAC [?]. The considered values for N are 20, 30, 50, 80 and 100. The SMAC
calibrations have been run using the first five instances (in lexicographical order)575

in any benchmark suite, thus 30 instances in total. Every SMAC calibration
has been set to perform 1000 executions, while every execution terminates after
50 000n fitness evaluations have been performed. Quite surprisingly, all the five
calibrations suggest the same population size, i.e., N “ 80.

After the tuning phase, each competitor has been run 20 times per instance,
thus a total of 31 400 executions have been performed. As in the calibration
phase, every execution terminates after 50 000n evaluations. The final fitness
values produced by the executions of every algorithm have been aggregated
for each instance by using the Average Relative Percentage Deviation (ARPD)
measure which is computed according to

ARPDAlg
Inst “

1

20

20
ÿ

i“1

ˇ

ˇ

ˇ
Alg

piq
Inst ´BestInst

ˇ

ˇ

ˇ

BestInst
ˆ 100 (10)

where Alg
piq
Inst is the final fitness value produced by the algorithm Alg in its580

i-th run on the instance Inst, while BestInst is the best result obtained by any
algorithm in any run on the given instance.

Table 1 provides the ARPDs and the average ranks aggregated on every
benchmark suite (computed à la Friedman as explained, for example, in [?]).
Note that, for the sake of presentation, the RND suite have been further divided585

with respect to the instance size. The best results are highlighted in bold.

Table 1: Experimental comparison on LOPCC benchmarks

Benchmarks VNDEP jDE-RK jDE-RKI SHADE-RK SHADE-RKI
ARPD Rank ARPD Rank ARPD Rank ARPD Rank ARPD Rank

UMTS 0.00 1.34 0.55 3.17 0.07 2.02 1.63 4.31 0.72 4.17
RND35 0.00 1.00 23.10 4.04 4.29 2.00 29.01 4.96 13.78 3.00
LOLIB 0.00 1.00 258.17 3.98 11.67 2.05 808.02 4.77 65.30 3.21
RND100 1.29 1.00 1251.21 4.00 120.82 2.04 2009.14 5.00 202.44 2.96
RND150 13.75 1.00 36662.86 4.00 616.74 2.52 99962.96 5.00 662.91 2.48

Overall 1.91 1.15 4382.85 3.62 56.83 2.08 11807.05 4.64 73.81 3.51

The table clearly shows that VNDEP largely outperforms all the random-key
schemes. Indeed, VNDEP obtains an average rank of 1 in almost all benchmark
suites. The only exception is on the smallest instances UMTS (n “ 16), where
also the other competitors have been able to reach some of the (presumably)590

optima. In particular, on the three smaller LOPCC benchmark suites, VNDEP

18

produced 0 as ARPD, thus meaning that all the VNDEP executions obtained
the best result in every instance. On the more difficult RND100 and RND150
instance sets, VNDEP is slightly less robust than in the other cases (ARPDs
larger than 0), however its difference with respect to the random-key DEs is595

huge.
Finally, as secondary aspects: the jDE scheme looks better than SHADE on

permutation problems, while, regarding the random-key variants, RKI outper-
forms RK.

7.2. Comparison with state-of-the-art results600

In order to validate VNDEP performances with respect to non-DE schemes,
here we compare its best results obtained on every tested instance with the
state-of-the-art results available in literature.

For LOPCC, the true optima of the instances are not known, except for the
smaller UMTS benchmark. Hence, the best known solutions have been collected605

by aggregating the results of the state-of-the-art algorithms presented in [?],
[?], [?], [?], and the more recent [?].

VNDEP reached the best known solution in every run on all the small in-
stances, i.e., UMTS, RND35, and LOLIB. More interesting are the comparisons
on the larger instance sets RND100 and RND150 that are provided in Tables,610

respectively, 2 and 3. For every instance, the (previous) best known and the
best VNDEP fitness value together with the relative percentage deviation be-
tween them are provided. VNDEP fitness values are in bold or italic when it,
respectively, improves or matches, the best known fitness.

The most impressive datum shown by Tables 2 and 3 is that, of a total of 50615

instances, VNDEP obtained 32 new state-of-the-art solutions, while it has been
able to at least match the known optima, in 40 instances. In average, VNDEP
improved by 0.32% the previously best known results of RND100 instances and
by 1.90% those of RND150 instances.

7.3. Additional experiments620

We analyze the performances of VNDEP with respect to the 10 non-adaptive
DEP implementations experimented in [?]. In order to make a more concise
presentation, we compare, on every LOPCC instance, the best objective value
obtained by VNDEP with respect to the best objective value obtained in all the
executions of all the 10 non-adaptive DEP implementations. The comparison is625

summarized in Table 4 where, for every benchmark set, it is provided: the num-
ber of instances where VNDEP outperformed DEP (Ĳ), the number of instances
where VNDEP and DEP obtained the same result (=), the number of instances
where VNDEP is outperformed by DEP (İ), and the average improvement of
VNDEP with respect to DEP.630

These data clearly show that VNDEP is never worse than the best DEP
setting. Most notable are the results for the RND100 and RND150 benchmarks,
where all the 50 objective values obtained by DEP have been strictly improved
by VNDEP. Moreover, though not shown in Table 4, the average objective

19

Table 2: Comparison with best known results on LOPCC RND100 instances

Instance Best Known VNDEP Rel. Dev.

t1d100.1 246.279 246.279 0.00
t1d100.2 284.924 282.933 ´0.70
t1d100.3 1236.237 1230.211 ´0.49
t1d100.4 6735.661 6735.661 0.00
t1d100.5 162.261 159.808 ´1.51
t1d100.6 391.662 390.943 ´0.18
t1d100.7 5641.137 5641.137 0.00
t1d100.8 2750.802 2750.802 0.00
t1d100.9 61.772 61.425 ´0.56
t1d100.10 155.892 154.812 ´0.69
t1d100.11 227.877 230.346 `1.08
t1d100.12 231.176 231.176 0.00
t1d100.13 577.453 591.506 `2.43
t1d100.14 246.030 242.554 ´1.41
t1d100.15 406.478 406.478 0.00
t1d100.16 707.413 707.413 0.00
t1d100.17 715.613 713.576 ´0.28
t1d100.18 621.415 620.809 ´0.10
t1d100.19 227.374 227.374 0.00
t1d100.20 236.088 231.865 ´1.79
t1d100.21 221.462 220.144 ´0.60
t1d100.22 141.255 140.005 ´0.88
t1d100.23 1588.314 1581.866 ´0.41
t1d100.24 464.961 461.479 ´0.75
t1d100.25 632.586 625.483 ´1.89

Average Relative Deviation ´0.32

Table 3: Comparison with best known results on LOPCC RND150 instances

Instance Best Known VNDEP Rel. Dev.

t1d150.1 8293.108 8698.638 `4.89
t1d150.2 159339.130 144514.109 ´9.30
t1d150.3 548507.282 574549.081 `4.75
t1d150.4 68125.331 69808.729 `2.47
t1d150.5 75426.662 67009.770 ´11.16
t1d150.6 44961.697 42502.756 ´5.47
t1d150.7 150146.763 149093.003 ´0.70
t1d150.8 247564.438 248881.062 `0.53
t1d150.9 363221.346 352938.663 ´2.83
t1d150.10 107685.011 100831.369 ´6.36
t1d150.11 12360.337 11915.362 ´3.60
t1d150.12 60614.534 62222.772 `2.65
t1d150.13 91988.932 91267.029 ´0.78
t1d150.14 70153.934 72484.726 `3.32
t1d150.15 321468.489 297746.166 ´7.38
t1d150.16 16231674.691 15364771.070 ´5.34
t1d150.17 71190.802 68346.418 ´4.00
t1d150.18 629986.069 610051.969 ´3.16
t1d150.19 59594.204 59554.467 ´0.07
t1d150.20 1886041.875 1993411.258 `5.69
t1d150.21 39248.997 38327.650 ´2.35
t1d150.22 671281.287 651354.266 ´2.97
t1d150.23 21468279.568 18983183.660 ´11.58
t1d150.24 100543.430 96832.862 ´3.69
t1d150.25 462316.511 504169.325 `9.05

Average Relative Deviation ´1.90

20

Table 4: Comparison between VNDEP and non-adaptive DEP

Benchmarks Ĳ = İ Avg Impr.

UMTS 0 100 0 0%
RND35 3 22 0 0.2532%
LOLIB 5 39 0 0.0005%
RND100 25 0 0 2.0443%
RND150 25 0 0 7.3271%

Overall 58 161 0 1.0728%

value obtained by VNDEP executions is always better than those obtained by635

the best non-adaptive DEP scheme. Therefore, the adaptive scheme used in
VNDEP represents a consistent improvement with respect to the non-adaptive
approaches previously proposed in [?].

We further study the contribution of each generating set in a typical execu-
tion of VNDEP. In this regard, Figure 6 shows the behavior of the probability640

assigned to every generating set by the REW-adaptation scheme in an execu-
tion of VNDEP on the instance t1d100.1. We have noted that all the observed
executions of VNDEP show a similar behavior.

Figure 6: Probabilities assigned to generating sets during the evolution.

Since REW-adaptation assigns probabilities based on the successes obtained
during the evolution, Figure 6 shows that the EXC generating set clearly gives645

a larger contribution than ASW and INS .
However, since VNDEP outperformed even the non-adaptive DEP imple-

mentation using EXC , also the contributions of ASW and INS are important
in order to reach good objective values.

Finally, in order to show the generality of the proposed approach, we also650

executed VNDEP on instances of the standard version of the Linear Ordering
Problem (LOP) [? ?]. Three benchmark suites have been considered: IO (50

21

instances with 44 ď n ď 79), SGB (25 instance with n “ 75), and MB (30 in-
stances with 100 ď n ď 250). These instances have known optima (available at
www.optsicom.es/lolib), thus making it possible to measure how good VNDEP655

is in an absolute sense. VNDEP has been executed 20 times per instance using
the same setting described in Section 7.1. Table 5 synthesizes the experiments
by showing, for each benchmark suite, the number of instances where the opti-
mum has been reached by VNDEP in at least one execution and in all the 20
executions.660

Table 5: VNDEP performances on LOP instances

Benchmarks #Instance solved #Instance solved
in at lest one run in all the runs

IO 50/50 50/50
SGB 25/25 24/25
MB 30/30 27/30

Overall 105/105 101/105

Interestingly, VNDEP has been able to reach the optimum in every instance.
Moreover, in 101 instances (out of 105) the optimum has been reached in all the
20 executions of VNDEP, while in the remaining four instances (N-sgb75.02,
N-r100c2, N-r150b1 and N-r200e1), the optimum has been reached in more
than 14 executions (out of 20).665

8. Conclusion and Future Work

We presented a Variable Neighborhood Algebraic Differential Evolution al-
gorithm for permutation-based optimization problems.

VNDEP individuals simultaneously search in the three classical permutation
neighborhoods by using a novel adaptive mechanism to dynamically choose a670

generating set during the evolution.
We have described and analyzed the decomposition algorithms for all the

proposed generating sets. For the generating set based on insertion moves,
an approximated method for the multiplication by a scalar a ą 1 has been
introduced. Moreover, the dynamical adaptation mechanism has been extended675

also to the crossover scheme and the scale factor parameter, thus VNDEP only
requires to set the population size.

As a case of study, VNDEP has been applied to the linear ordering problem
with cumulative costs. Experiments have been held on a wide set of com-
monly adopted benchmark instances, where VNDEP has been compared with680

the random-key based DEs, which are widely used in literature to tackle per-
mutation problems. Furthermore, a comparison with the state-of-the-art results
has been carried out.

VNDEP largely outperforms the four random-key competitor algorithms
and, most remarkably, it obtained 32 new best known solutions of the 50 most685

challenging instances. Moreover, experiments have been held also on commonly

22

adopted instances of the LOP, where VNDEP reached, in almost every execu-
tion, the known optimal values.

As future work, we are planning to further analyze the adaptive mechanism
based on the dynamic rewards and to use it in other evolutionary algorithms.690

Finally, we are also interested to apply VNDEP to other permutation-based
optimization problems.

Acknowledgements

The research described in this work has been partially supported by: the
research grant “Fondi per i progetti di ricerca scientifica di Ateneo 2019” of the695

University for Foreigners of Perugia under the project “Algoritmi evolutivi per
problemi di ottimizzazione e modelli di apprendimento automatico con appli-
cazioni al Natural Language Processing”; and by RCB-2015 Project “Algoritmi
Randomizzati per l’Ottimizzazione e la Navigazione di Reti Semantiche” and
RCB-2015 Project “Algoritmi evolutivi per problemi di ottimizzazione combi-700

natorica” of Department of Mathematics and Computer Science of University
of Perugia.

References

23

	Introduction
	Related Work
	Classical Differential Evolution
	Discrete Differential Evolution schemes for Permutations
	DE schemes based on algebraic principles

	Algebraic Interpretation of the Permutations Search Space
	The Symmetric Group and its Generating Sets
	The Cayley Graph of Permutations

	Vector-like Operations on Permutations
	Addition and Subtraction for Permutations
	Scalar Multiplication for Permutations

	Randomized Decomposition Algorithms
	Decomposition based on ASW generators
	Maximal-weight permutation for ASW
	Decomposition based on EXC generators
	Maximal-weight permutations for EXC
	Decomposition based on INS generators
	INS approximate multiplication by a>1

	Variable Neighborhood Algebraic Differential Evolution for Permutations
	Algebraic Differential Mutation
	Crossovers for Permutations
	Adaptive schemes
	Restart procedure

	Experiments
	Comparison with random-key DEs
	Comparison with state-of-the-art results
	Additional experiments

	Conclusion and Future Work

