
Algebraic Particle Swarm Optimization
for the Permutations Search Space

Marco Baioletti, Alfredo Milani, Valentino Santucci
Department of Mathematics and Computer Science

University of Perugia, Italy
Email: {marco.baioletti, alfredo.milani, valentino.santucci}@unipg.it

Abstract—Particle Swarm Optimization (PSO), though being
originally introduced for continuous search spaces, has been
increasingly applied to combinatorial optimization problems. In
particular, we focus on the PSO applications to permutation
problems. As far as we know, the most popular PSO variants that
produce permutation solutions are those based on random key
techniques. In this paper, after highlighting the main criticalities
of the random key approach, we introduce a totally discrete
PSO variant for permutation-based optimization problems. The
proposed algorithm, namely Algebraic PSO (APSO), simulates
the original PSO design in permutations search space. APSO
directly represents the particle positions and velocities as per-
mutations. The APSO search scheme is based on a general
algebraic framework for combinatorial optimization previously,
and successfully, introduced in the context of discrete differential
evolution schemes. The particularities of the PSO design scheme
arouse new challenges for the algebraic framework: the non-
commutativity of the velocity terms, and the rationale behind the
PSO inertial move. Design solutions have been proposed for both
the issues, and two APSO variants are provided. Experiments
have been held to compare the performances of the proposed
APSO schemes with respect to the random key based PSO
schemes in literature. Widely adopted benchmark instances of
four popular permutation problems have been considered. The
experimental results clearly show, with high statistical evidence,
that APSO outperforms its competitors.

I. INTRODUCTION

Particle Swarm Optimization (PSO) is a popular evolu-
tionary algorithm introduced by Kennedy and Eberhart in
1995 [1]. Unlike classical evolutionary algorithms, its search
scheme does not rely on genetic operators. Indeed, in PSO, a
population of commonly called particles is iteratively updated
by means of simple move equations whose design is inspired
by swarm intelligence principles.

Though it has been originally proposed for continuous
search spaces, PSO variants for combinatorial optimization
problems have increasingly appeared in literature [2], [3].
While the first discrete PSO has been introduced for binary
problems [4], a large number of PSO applications to permuta-
tion based optimization problems has been proposed. See for
instance [5], [6], [7], [8].

In this paper we focus on PSO algorithms for the per-
mutations search space. To the best of our knowledge, the
vast majority of PSO applications to permutation problems
are based on the random key (RK) technique, and slight
variants, which has been originally proposed in [9] for genetic
algorithms. RK consists in a decoder function that converts a

vector in Rn into a permutation of n integers by sorting the
vector components. Using RK, permutation problems can be
directly approached by the classical PSO scheme. The only
required modification is to introduce the RK decoding step
whenever a particle position has to be evaluated. However,
despite of its simplicity, the PSO+RK approach has several
issues:

• often, the reported good results are only obtained by
hybridizing the PSO+RK scheme with a variety of ad-
ditional techniques (local searches, heuristic functions,
restart mechanisms, etc.) and, as far as we know, no study
is provided to understand if the standalone PSO+RK is
effective or not;

• due to obvious cardinality reasons, a single permutation
can be encoded by a potentially infinite number of
numeric vectors, thus introducing large plateaus in the
fitness landscape navigated by the underlying continuous
PSO;

• the intuition of how the PSO algorithm searches and
moves in the continuous space, for which it has been
originally designed, is completely lost when the algorithm
is integrated with the RK decoding procedure and its
moves are observed in the combinatorial search space
of permutations.

In a previous series of papers [10], [11], [12], [13], [14],
[15], we have proposed very effective algebraic differential
evolution schemes for permutation problems. The classical
differential evolution, like PSO, is an algorithm for continuous
optimization. The proposed discrete variants are based on an
original framework that exploits the algebraic structure of
the permutations search space. Here, we use the algebraic
framework to introduce a totally discrete variant of PSO for the
permutations search space that, conversely from the PSO+RK
approach, directly evolves a population of permutations by
redefining the PSO move equations in such a way that the
continuous PSO movement design is simulated in the permu-
tations search space.

The Algebraic PSO (APSO), conversely from the previously
proposed algebraic differential evolution, makes use of only
algebraic operators, thus representing the first “completely
algebraic” evolutionary algorithm proposal. Besides the direct
application of the algebraic framework to PSO, a further study
on how to simulate the PSO inertial move in the permutations

space has been conducted. Hence, we also provide a second
implementation of APSO aiming to preserve the particle
inertial trajectory similarly to what happen in its continuous
counterpart. Moreover, differently from the past algebraic
differential evolution schemes, the non-commutativity of the
framework’s addition operator highlighted a new design choice
on the ordering of the PSO velocity terms.

Experiments have been held with the aim of comparing
the effectiveness of the proposed APSOs with respect to the
PSO+RK approaches in literature. Problem instances have
been selected from commonly adopted benchmark suites of
the four most popular permutation problems: the permutation
flowshop scheduling problem (PFSP), the linear ordering
problem (LOP), the traveling salesman problem (TSP), and
the quadratic assignment problem (QAP). The experimental
results show that the proposed APSOs clearly outperform the
PSO+RK schemes with high statistical evidence.

The rest of the paper is organized as follows. Section II
recall the classical PSO algorithm together with the random
key techniques. The algebraic framework for combinatorial
optimization is briefly described in Section III, while the
APSO scheme is introduced in Section IV. The experimental
analysis is provided in Section V, while conclusions are drawn
in Section VI, where future lines of research are also depicted.

II. PARTICLE SWARM OPTIMIZATION AND RANDOM KEY

The description of a standard continuous PSO is provided in
Section II-A. This scheme has been used as the PSO reference
implementation throughout the rest of the paper. Moreover,
Section II-B recalls the random key approaches available in
literature by also connecting them through a simple algebraic
consideration.

A. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm [1] itera-
tively evolves a population of N particles in order to optimize
the given numerical objective function f : Rn → R.

The i-th particle of the population is composed by: the
current position xi ∈ Rn, the velocity vi ∈ Rn, the personal
best position pi ∈ Rn, and the neighborhood best position
gi ∈ Rn.

The communication among the particles is modeled by
defining a neighborhood Ni for every particle i. A variety of
neighborhood topologies are possible. The most popular are
the global topology, where all particles are connected to each
other, and the ring topology, where the particles are arranged
in a ring such that any particle has a neighbor to its left and its
right. It is known that the global topology frequently produces
a premature convergence of the population, therefore the ring
topology is usually preferred [16].

Particles positions and velocities are randomly initialized.
Then, following the most popular PSO update rules [16], at
every generation, the velocity and the current position of every
particle i are updated according to:

vi ← wvi + c1r1i(pi − xi) + c2r2i(gi − xi), (1)

xi ← xi + vi, (2)

where r1i, r2i ∈ [0, 1] are randomly generated at every step,
and w, c1, c2 ≥ 0 are the three PSO parameters called, respec-
tively, inertial, cognitive and social coefficient. The objective
function is evaluated on the new position xi, i.e., f(xi) is
computed, and the personal and neighborhood best are update,
in the case of minimization, according to:

pi ← arg min {f(xi), f(pi)} , (3)

gi ← arg min {f(pj) : j ∈ Ni} , (4)

where the arg min has to be replaced with arg max for
maximization problems.

The rationale behind the design of equations (1–4) is that
the move of a single particle in the search space is influenced
by the superposition of three aspects: (i) the inertial tendency
to follow the previous search direction, (ii) the cognitive bias
towards the best visited position so far, and (iii) the social
disposition to move towards good solutions communicated by
the neighbors. In particular, these three aspects are modeled
by the three terms of the velocity update rule (1).

B. Random Key Decoders

The most popular technique that allows to apply PSO to
permutation based optimization problems is the use of random
key decoders. See for instance [5], [6], [7], [8].

The first random key decoder has been proposed in [9] in
the context of genetic algorithms. Formally, by denoting with
Sn the set of permutations of the integers in {1, . . . , n}, [9]
introduces a decoder function RK : Rn → Sn which can be
used by PSO to optimize the objective function f : Sn →
R of the permutation problem at hand. Therefore, the only
modification to the classical PSO is to consider f(RK(x)) as
the fitness value of every particle position x ∈ Rn.

The decoder RK transforms x ∈ Rn to the permutation
π ∈ Sn such that the sequence xπ(1), . . . , xπ(n) is increasingly
ordered. For example, if x = (0.46, 0.91, 0.33, 0.75, 0.51), its
corresponding permutation is π = RK(x) = 〈3, 1, 5, 4, 2〉.
Therefore, RK requires to sort the component indexes of x
basing on their corresponding values.

Also a simple variant of RK has been considered in litera-
ture, see for instance [8]. In this variant, a vector x ∈ Rn is
decoded to the permutation ρ ∈ Sn such that ρ(i) = ri, where
ri is the rank of xi among the vector components x1, . . . , xn
sorted in ascending order. Using the numeric vector of the
previous example, ρ = 〈2, 5, 1, 4, 3〉. It is easy to see that the
permutation ρ is the inverse permutation of π, i.e., ρ = π−1,
and vice versa. Hence, though not explicitly reported in
literature, this decoding scheme, to which we refer with RKI ,
can be obtained by inverting the result of RK and vice versa,
i.e., RKI(x) = (RK(x))

−1 and RK(x) = (RKI(x))
−1.

Therefore, we refer to the two random key based PSO
schemes with the acronyms PSO+RK and PSO+RKI. More-
over, without loss of generality, in both RK and RKI , we
only consider to sort the vector components in ascending order,
while ties are randomly broken.

III. ALGEBRAIC FRAMEWORK FOR COMBINATORIAL
SEARCH SPACES

In this section we provide a concise description of the
algebraic framework for evolutionary computation previously
proposed in [10], together with its extension introduced in
[12]. The framework is based on the notion of finitely gener-
ated group and the related algebraic and geometric concepts.
Its aim is to introduce the operations ⊕, 	, � on the set of
discrete solutions in such a way that they simulate, as much
as possible, the analogous vector operations of the Euclidean
space.

A. Search Spaces and Finitely Generated Groups

The triplet G = (X, ?,H) is a finitely generated group
representing a combinatorial search space if and only if:
• X is the discrete set of solutions in the search space;
• ? : X × X → X is a binary operation on X which

satisfies the group properties: associativity, existence of
the identity e ∈ X , and existence of the inverse x−1 ∈ X
for any x ∈ X; if ? is also commutative, the group is
Abelian, but it is not required;

• H ⊆ X is a finite generating set of the group, i.e., any
x ∈ X can be decomposed as x = h1 ? · · · ? hl for some
h1, . . . , hl ∈ H .

A decomposition x = h1 ? · · · ? hl of x ∈ X is minimal if
there exists no other decomposition x = h′1 ? · · · ? h′m with
m < l. The length l of a minimal decomposition of x is the
weight of x and it is denoted by |x|.

Given a finitely generated group G = (X, ?,H), its Cayley
graph C(G) is the labelled digraph whose vertexes are the
solutions in X and there exists an arc from x to y labelled by
h ∈ H if and only if y = x ? h.

In the Cayley graph, for all x ∈ X , every directed path
from e to x corresponds to a decomposition of x: if the arcs
labels occurring in the path are 〈h1, h2, . . . , hl〉, then x =
h1 ?h2 ? · · ·?hl. As a consequence, shortest paths from e to x
correspond to minimal decompositions of x. More generally,
a shortest path from x to y, where x, y ∈ X , corresponds to
a minimal sequence of generators 〈h1, h2, . . . , hl〉 such that
x?(h1?h2?· · ·?hl) = y. Hence, 〈h1, h2, . . . , hl〉 is a minimal
decomposition of x−1 ? y.

The diameter D of C(G) is defined as the maximal weight
of the elements in X . Moreover, an interesting partial order
relation, which will be useful later, is defined as follows.
For x, y ∈ X , x v y if and only if there exists (at least)
a shortest path from e to y passing by x. For the sake of
presentation, here we focus on groups with a unique maximal
weight element ω such that x v ω for all x ∈ X . The concrete
group considered later belongs to such a class.

The Cayley graph has an important geometric interpretation.
Indeed, a sequence of generators 〈h1, h2, . . . , hl〉 can be seen
as a vector which connects a starting point x ∈ X to the
end point y = x ? (h1 ? h2 ? · · · ? hl). On the other hand,
any element x ∈ X can be decomposed as a sequence of
generators 〈h1, h2, . . . , hl〉 and therefore it can be considered

also as a free vector. The dichotomous interpretation of the
elements of X , as points and as vectors, allows to define
the operations ⊕,	,� on X which simulate the analogous
operations of the Euclidean space.

B. Addition and Subtraction

The addition z = x⊕ y is defined as the application of the
vector y ∈ X to the point x ∈ X . The result z is computed by
choosing a decomposition 〈h1, h2, . . . , hl〉 of y and by finding
the end point of the path which starts from x and whose arcs
labels are 〈h1, h2, . . . , hl〉, i.e., z = x? (h1 ?h2 ? · · · ?hl). By
noting that h1 ?h2 ? · · ·?hl = y, the addition ⊕ is independent
from the generating set and is uniquely defined as

x⊕ y := x ? y. (5)

Continuing the analogy with the Euclidean space, the differ-
ence between two points is a vector. Given x, y ∈ X , the dif-
ference y	x produces the sequence of labels 〈h1, h2, . . . , hl〉
in a path from x to y. Since h1?h2? · · ·?hl = x−1?y, we can
replace the sequence of labels with its product, thus making
the difference independent from the generating set. Therefore,
	 is uniquely defined as

y 	 x := x−1 ? y. (6)

Both ⊕ and 	, like their numerical counterparts, are con-
sistent to each other. Indeed, x⊕ (y	x) = y for all x, y ∈ X .
Moreover, both operations are not commutative (unless the
group is Abelian), ⊕ is associative, and e is its neutral element.

C. Scalar Multiplication

Again, as in the Euclidean space, it is possible to multiply
a vector by a non-negative scalar. Given a ≥ 0 and x ∈ X ,
we denote their multiplication with a� x.

We first provide the properties that a � x has to verify in
order to simulate, as much as possible, the scalar multiplication
of vector spaces:

(C1) |a� x| = da · |x|e;
(C2) if a ∈ [0, 1], a� x v x;
(C3) if a ≥ 1, x v a� x.

Clearly, the scalar multiplication of Rn satisfies the slight
variant of (C1) where the Euclidean norm replaces the group
weight and the ceiling is omitted. Besides, similarly to scaled
vectors in Rn, (C2) and (C3) intuitively encode the idea that
a� x is the element x scaled down or up, respectively.

It is important to note that, fixed a and x, there may be
more than one element of X satisfying (C1–C3). This is
a clear consequence of the non uniqueness of the minimal
decomposition of x. Therefore, different strategies can be
devised to compute a � x. Nevertheless, our aim is to apply
the operation in evolutionary algorithms, therefore we denote
with a� x a randomly selected element satisfying (C1–C3).

Note also that the diameter D induces an upper bound on
the possible values for the scalar a. Indeed, for any x ∈ X , let
ax = D

|x| , if a > ax, (C1) would imply |a� x| > D, but this

is impossible. Therefore, similarly to out-of-bounds handling
techniques of continuous evolutionary algorithms, we define

a� x := ax � x, when a > ax. (7)

The multiplication a�x can be computed by: (i) randomly
selecting a shortest path from e to ω passing by x, and (ii)
composing the first da · |x|e generators on its arcs. Since any
sub-path of a shortest path is itself a shortest path, and by
also considering that shortest paths correspond to minimal
decompositions, it is easy to see that the conditions (C1–C3)
are satisfied.

Let l = |x|, we can observe that the sequence of genera-
tors 〈h1, . . . , hl, . . . , hD〉 on the chosen shortest path can be
divided in two parts: 〈h1, . . . , hl〉 and 〈hl+1, . . . , hD〉. The
former is a minimal decomposition of x, while the latter
minimally decomposes x−1 ? ω. Operatively, only one of
the sub-paths is used to compute a � x. When a ≤ 1, the
generators to compose are all in the first sub-path 〈h1, . . . , hl〉.
Conversely, for a > 1, it is sufficient to take the first da · le− l
generators in the second sub-path 〈hl+1, . . . , hD〉 and compose
them to the right of x.

The pseudo-codes of the two procedures for a ∈ [0, 1] and
a > 1 are reported, respectively, in Figures 1 and 2. Both
rely on the abstract procedure RandDec which is assumed
to return a random minimal decomposition of the element in
input. An implementation of RandDec has to consider the
particularities of the concrete finitely generated group at hand.
Note also that Extend implements equation (7).

1: function TRUNCATE(a ∈ [0, 1], x ∈ X)
2: s← RandDec(x)
3: l← Length(s)
4: k ← da · le
5: z ← e
6: for i← 1 to k do
7: z ← z ? si
8: end for
9: return z

10: end function

Fig. 1. Truncation algorithm for computing a� x when a ∈ [0, 1]

1: function EXTEND(a > 1, x ∈ X)
2: s← RandDec(x−1 ? ω)
3: l← D − Length(s)
4: ax = D

l
5: a← min{a, ax}
6: k ← da · le
7: z ← x
8: for i← 1 to k − l do
9: z ← z ? si

10: end for
11: return z
12: end function

Fig. 2. Extension algorithm for computing a� π when a > 1

D. Vector Operations for the Symmetric Group

In this paper we focus on the “symmetric group” Sn which
is the group of all the permutations of the set [n] = {1, . . . , n}.
The group operation is the permutation composition operator
◦. Given π, ρ ∈ Sn, their composition π ◦ ρ is defined as the
permutation (π ◦ ρ)(i) = π(ρ(i)) for all the indexes i ∈ [n].
Sn is not Abelian and its identity is the permutation e such
that e(i) = i for all i ∈ [n].

Therefore, as in the abstract definitions (5) and (6), given
π, ρ ∈ Sn, ⊕ and 	 are implemented as:

π ⊕ ρ := π ◦ ρ, (8)

ρ	 π := π−1 ◦ ρ. (9)

Moreover, different generating sets are possible in Sn (see
[12] and [17]). Here, we focus on the subset of the n−1 simple
transpositions, i.e., the set ST = {σi ∈ Sn : 1 ≤ i < n} where
σi is defined as: σi(i) = i + 1, σi(i + 1) = i, and σi(j) = j
for j ∈ [n] \ {i, i+ 1}. Considering ST , the maximum weight
element of Sn is the permutation ω such that ω(i) = n+1− i
for all i ∈ [n]. The diameter D is then

(
n
2

)
.

Since simple transpositions act as adjacent swaps, the ran-
domized decomposition algorithm for the finitely generated
group (Sn, ◦, ST) is a randomization of the classical bubble-
sort algorithm. It has been called RandBS and is presented
in Figure 3. RandBS sorts π in increasing order (hence
obtaining e) by iteratively choosing a random adjacent swap
move from the set of “adjacent inversions” A. The correctness
of RandBS has been proven in [10].

1: function RANDBS(π)
2: s← 〈 〉
3: A← {σi ∈ ST : i < i+ 1 and π(i) > π(i+ 1)}
4: while A 6= Ø do
5: σ ← select an element from A uniformly at random
6: π ← π ◦ σ
7: s← Concatenate(〈σ〉, s)
8: A← Update(A, σ) . Θ(1) complexity
9: end while

10: return s
11: end function

Fig. 3. Randomized decomposition algorithms for permutations

By replacing RandDec and ? in the algorithms of Figures 1
and 2 with, respectively, RandBS and ◦, we have a concrete
implementation of � for the symmetric group.

Finally note that ⊕ and 	 cost Θ(n), while � costs Θ(n2).

IV. ALGEBRAIC PARTICLE SWARM OPTIMIZATION

The Algebraic Particle Swarm Optimization (APSO), anal-
ogously to what happen for PSO in the continuous space,
iteratively evolves a population of N particles in order to
optimize the objective function f : Sn → R of a permutation-
based optimization problem.

The i-th particle of the population is composed by: the
current position χi ∈ Sn, the velocity νi ∈ Sn, the personal
best position πi ∈ Sn, and the neighborhood best position

γi ∈ Sn. The neighborhood structure Ni is defined exactly as
in the classical PSO. Importantly, note that both positions and
velocities are permutations. Indeed, they have to be intended
as, respectively, vertexes and paths on the Cayley graph of
permutations.

In principle, APSO can be defined by replacing the numeric
operators in the PSO move equations (1) and (2) with the alge-
braic operators introduced in Section III. Hence, by separately
defining the three velocity terms of the i-th particle as:

θ
(I)
i = w � νi, (10)

θ
(C)
i = (c1 · r1i)� (πi 	 χi), (11)

θ
(S)
i = (c2 · r2i)� (γi 	 χi), (12)

APSO iteratively updates the velocity and position of the
particle according to:

νi ← θ
(I)
i ⊕ θ

(C)
i ⊕ θ(S)i , (13)

xi ← xi ⊕ vi, (14)

where, exactly as in the continuous PSO, r1i, r2i ∈ [0, 1] are
randomly generated at every step, and w, c1, c2 ≥ 0 are the
three inertial, cognitive and social coefficients.

However, care has to be taken due to the non-commutativity
of the ⊕ operator. While, in the position update equation
(14) it is reasonable to interpret the first term as a “point”
and the second term as a “vector”, the three terms of the
velocity update equation (13) are all “vectors”, thus there is
no preferred ordering to add them. Additionally, preliminary
experiments confirm that no specific ordering outperforms the
others. Therefore, in order to handle the non-commutativity of
⊕, in equation (13) we add the three terms θ(I)i , θ(C)

i , θ(S)i by
randomly selecting one of their 3! = 6 possible orderings.

After a particle has been moved, its new position is evalu-
ated, i.e., f(χi) is computed, and the personal and neighbor-
hood best are updated as in the classical PSO (see equations
(3) and (4)).

The algebraic structure induced by our framework is not
exactly a vector space. Therefore, pathological situations like
the one depicted in Figure 4 may arise. Let us examine the
example. For the sake of clarity, we omit the particle index but
we introduce the generation index in the notation. We imagine
to be at time step t + 1. We know the previous positions
χt−1, χt and the previous velocity νt = χt 	 χt−1 (from
equation (14)). We want to compute νt+1 and χt+1. Since in
the example c1 = c2 = 0, we have νt+1 = θ

(I)
t+1, thus we only

consider the computation χt+1 = χt ⊕ θ(I)t+1. The rationale of
the classical PSO inertial move is that the distance between
χt+1 and χt−1 should be larger than the distance between χt
and χt−1. Practically, in the figure we should have χt+1 at
the right of χt. However, since all the simple transpositions
are inverses of themselves, in Figure 4 it happens that χt+1 is
at the left of χt, thus closer to χt−1. Essentially, the particle,
instead of moving beyond χt and away from χt−1, moves
back towards χt−1. This happens for all the velocities with a
decomposition that has as suffix a reversed prefix of itself.

The reason of the pathological case above is that in our
framework, differently from the real vector space, w � ν 6=
[(1 + w)� ν]	 ν.1 Therefore, to address these situations, we
also propose an inertia-preserving variant of APSO, namely
APSO-i, which redefines equation (10) by setting the inertial
term to be the right side of the inequality above. Formally,
APSO-i employs the same move equations (13) and (14) of
APSO, except the term θ

(I)
i which is replaced with θ

(I∗)
i

defined according to

θ
(I∗)
i = [(1 + w)� νi]	 νi. (15)

Figure 4 also shows how the pathological example is
avoided using the inertia-preserving scheme APSO-i. Indeed,
θ(I∗) can be considered to work in two steps: (i) the operation
(1 + w) � νi extends the decomposition of νi, and (ii) the
subtraction by νi removes the first |νi| generators already
“consumed” in the previous movement of the particle. Hence,
exactly as for θ(I), |θ(I∗)| = dw · |νi|e, but now the generators
are selected in the same “trajectory” followed by the particle
at the previous step.

V. EXPERIMENTS

Experiments have been held on the four most popular
permutation-based optimization problems, i.e.: the linear or-
dering problem (LOP), the permutation flowshop scheduling
problem (PFSP), the quadratic assignment problem (QAP),
and the traveling salesman problem (TSP). A total of 32
instances, equally divided in the four problems, have been
selected: 16 instances for the parameters tuning and 16
instances for the algorithms comparison. The name of the
instances, together with the objective function formulations,
are provided in Table I. All the selected instances come from
widely adopted benchmark suites: LOLIB2 for LOP, Taillard
benchmark suite3 for PFSP, QAPLIB4 for QAP, and TSPLIB5

for TSP. PFSP has been investigated using the total flowtime
as objective criterion [10], while, for TSP, we have adopted
the objective function formulation that fixes the last city in the
tour [18], thus allowing a one-to-one correspondence between
TSP tours and permutations of n− 1 cities.

The algorithms investigated are the two APSO implementa-
tions here presented, i.e., APSO and APSO-i, together with the
two random key based PSOs, i.e., PSO+RK and PSO+RKI.
The ring topology has been adopted in all the algorithms
which have been implemented without using any additional
technique such as local searches, heuristic functions, restart
mechanisms, etc. Indeed, the aim of this empirical comparison
is not to provide a state-of-the-art algorithm for the problem
at hand, but to verify if our proposal, though being more

1Actually, this depends from the fact that ⊕,	,� induce an algebraic
structure more general than a vector space, where the distributivity of the
scalar multiplication with respect to the field addition does not worth.

2LOLIB instances are available at http://www.optsicom.es/lolib/.
3PFSP Taillard instances are available at http://mistic.heig-

vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html.
4QAPLIB instances are available at http://anjos.mgi.polymtl.ca/qaplib/.
5TSPLIB instances are available at http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/.

Fig. 4. Pathological example of the inertial move

TABLE I
BENCHMARK PROBLEMS AND INSTANCES

Problem Objective Function Definition of symbols Tuning Instances Test Instances

LOP maxπ∈Sn

{∑n
i=1

∑n
j=i+1Mπ(i),π(j)

}
M is the n× n I/O matrix

N-be75np N-be75eec
N-be75tot N-stabu74
N-tiw56n66 N-tiw56n54
N-tiw56r72 N-t69r11xx

PFSP minπ∈Sn
{∑n

i=1 cπ(i),m
} cπ(i),j = pπ(i),j + max

{
cπ(i−1),j , cπ(i),j−1

}
tai50 5 1 tai20 10 0

ci,0 = c0,j = 0 tai50 10 0 tai50 5 0
pi,j is the processing time of job i on machine j tai50 10 5 tai50 20 0
n and m are the number of jobs and machines tai50 20 1 tai100 10 0

QAP minπ∈Sn

{∑n
i=1

∑n
j=1 Fi,jDπ(i),π(j)

} F is the n× n flow matrix tai25a tai15a
tai25b tai15b

D is the n× n distance matrix tai30a tai40a
tai30b tai40b

TSP minπ∈Sn−1

{∑n−2
i=1 dπ(i),π(i+1) + dπ(n−1),n + dn,π(1)

} di,j is the distance between cities i and j bayg29 fri26
swiss42 bays29

n is the number of cities gr48 dantzig42
hk48 berlin52

close in some sense to the search philosophy at the basis of
the continuous PSO, is also competitive with respect to the
standalone PSO+RK schemes.

Due to the different characteristics of the search spaces nav-
igated by the algebraic and random key based algorithms, in
order to perform a fair comparison, the parameters of the four
algorithms have been separately tuned using SMAC [19], i.e.,
a popular software tool for automatic algorithm configuration
based on statistical and machine learning techniques. To avoid
the over-tuning phenomenon [20], SMAC calibrations have
been run using a separate set of instances with respect to those
used in the experiments for algorithms comparison (see Table
I). Every SMAC calibration has been set to perform 2000
executions, while every execution terminates after 1000n2

fitness evaluations have been performed. The ranges of the
parameters (in input to SMAC), together with the parameters
configurations produced by SMAC, are provided in Table II.
Interestingly, the calibrated value of the inertial coefficient w
is four times bigger in APSO-i with respect to APSO where w
is almost null. This looks to be a first validation of the reasons
previously discussed for the introduction of the inertial APSO.

The four algorithms, configured using the SMAC indica-
tions, have been compared on the 16 selected test instances

TABLE II
PARAMETERS TUNING

Algorithm Ranges of the Parameters Tuned Parameters

APSO

N ∈ {20, 60, 100} N = 20
w ∈ [0, 0.8] w = 0.04
c1 ∈ [0.2, 1.8] c1 = 1.18
c2 ∈ [0.2, 1.8] c2 = 1.61

APSO-i

N ∈ {20, 60, 100} N = 100
w ∈ [0, 0.8] w = 0.16
c1 ∈ [0.2, 1.8] c1 = 0.25
c2 ∈ [0.2, 1.8] c2 = 1.27

PSO+RK

N ∈ {20, 60, 100} N = 100
w ∈ [0, 0.8] w = 0.80
c1 ∈ [0.2, 1.8] c1 = 1.52
c2 ∈ [0.2, 1.8] c2 = 1.77

PSO+RKI

N ∈ {20, 60, 100} N = 100
w ∈ [0, 0.8] w = 0.74
c1 ∈ [0.2, 1.8] c1 = 0.31
c2 ∈ [0.2, 1.8] c2 = 1.80

reported in Table I. Every algorithm has been executed 20
times per instance and, again, 1000n2 has been used as
the budget of fitness evaluations in every run. The final
fitness values produced by the runs of every algorithm have

been aggregated for each instance using the Average Relative
Percentage Deviation (ARPD) measure which is computed
according to

ARPDAlg
Inst =

1

20

20∑
i=1

∣∣∣Alg(i)Inst −BestInst∣∣∣× 100

BestInst
(16)

where Alg
(i)
Inst is the final fitness value produced by the

algorithm Alg in its i-th run on the instance Inst, while
BestInst is the best result obtained by any algorithm in any
run on the given instance. Note that, both for maximization
and minimization problems, the ARPD values have to be
minimized. The ARPDs obtained in this experimental session
are provided in Table III that also shows averaged ARPD
values together with non-parametric measures such as the
average ranks among the competitors. Finally, in order to
establish the statistical significance of the differences among
the performances of the competitor algorithms, as suggested
in [21], the non-parametric Friedman statistical test and the
Finner post-hoc procedure have been performed on the results.
The p-values are provided in the last line of Table III.

TABLE III
EXPERIMENTAL RESULTS WITH FITNESS EVALUATIONS BUDGET

Problem Instance APSO APSO-i PSO+RK PSO+RKI

LOP

N-be75eec 1.26 0.32 9.99 1.96
N-stabu74 2.44 1.01 9.87 4.67
N-tiw56n54 2.15 0.96 11.81 4.37
N-t69r11xx 1.20 0.50 8.65 2.67

Avg ARPD on LOP 1.76 0.70 10.08 3.42
Avg Rank on LOP 2 1 4 3

PFSP

tai20 10 0 1.34 0.76 4.89 3.89
tai50 5 0 3.49 2.30 9.65 5.45
tai50 20 0 2.13 2.06 5.89 4.66
tai100 10 0 1.16 1.12 5.65 5.28

Avg ARPD on PFSP 2.03 1.56 6.52 3.73
Avg Rank on PFSP 2 1 4 3

QAP

tai15a 3.47 2.88 5.30 5.99
tai15b 0.35 0.31 0.71 0.80
tai40a 1.12 1.15 3.94 4.48
tai40b 10.06 5.18 19.21 19.28

Avg ARPD on QAP 3.75 2.38 7.29 7.64
Avg Rank on QAP 1.75 1.25 3 4

TSP

fri26 15.03 7.23 29.95 33.69
bays29 22.16 16.44 57.36 46.30
dantzig42 32.45 24.53 44.93 7.54
berlin52 18.66 11.91 50.04 51.99

Avg ARPD on TSP 22.08 15.03 45.57 34.88
Avg Rank on TSP 2.25 1.25 3.5 3
Avg ARPD on all instances 7.40 4.92 17.36 12.69
Avg Rank on all instances 2 1.12 3.62 3.25
Friedman+Finner p-value < 10−3 best < 10−14 < 10−12

Table III clearly shows that the algebraic algorithms out-
perform the random key based PSOs. Indeed, both APSO and
APSO-i outperformed the best of the two PSO+RK schemes
on 15 instances over 16. In particular the inertial variant of
APSO, i.e., APSO-i, looks to be the best algorithm on 14
instances over 16 (and the second one in the remaining two
instances). Also the very small p-values of the statistical test
largely validate the superiority of APSO-i. Therefore, the two
main conclusions we draw from this session of experiments
are: (i) APSO schemes are empirically better than the classical
random key based PSOs with an high statistical evidence,

and (ii) the proposal of the inertia-preserving variant APSO-
i is validated by its results with respect to the “normal”
APSO. The only weakness of the algebraic schemes has been
registered on the TSP instance “dantzig42” where PSO+RKI
outperforms both APSO-i and APSO (that, anyway, are better
than PSO+RK). Anyway, the reasons of why this instance is
deceptive for all the competitors except PSO+RKI deserves
further investigation. Finally, two last aspects that emerge from
Table III are: (i) the larger ARPDs registered on the TSP
instances may indicate that all the algorithms loss robustness
on that problem, and (ii) PSO+RKI is almost always better
than PSO+RK.

Due to the different time complexities — Θ(Nn2) and
Θ(Nn log n) per generation, respectively, for APSOs and
PSO+RKs —, the random key based algorithms reach the
evaluations cap faster than the algebraic PSOs. Therefore, a
further comparison has been performed by using a termination
criterion based on the computational time, thus allowing
random key based PSOs to perform more fitness evaluations
than APSOs, but both using the equal budget of time and the
same parameters of Table II. Therefore, in this experimental
session, every algorithm execution terminates after n2 seconds.
The ARPDs, the ranks and the statistical results are presented
in Table IV using the same layout of Table III.

TABLE IV
EXPERIMENTAL RESULTS WITH TIME BUDGET

Problem Instance APSO APSO-i PSO+RK PSO+RKI

LOP

N-be75eec 0.63 0.34 5.58 3.06
N-stabu74 1.39 0.60 6.57 4.46
N-tiw56n54 1.29 0.43 8.91 4.81
N-t69r11xx 1.01 0.17 8.25 2.63

Avg ARPD on LOP 1.08 0.39 7.33 3.74
Avg Rank on LOP 2 1 4 3

PFSP

tai20 10 0 0.34 0.12 3.84 3.96
tai50 5 0 2.29 1.63 8.16 6.96
tai50 20 0 1.28 0.78 3.09 4.42
tai100 10 0 1.10 1.05 4.52 4.80

Avg ARPD on PFSP 1.25 0.89 4.90 5.04
Avg Rank on PFSP 2 1 3.25 3.75

QAP

tai15a 1.60 0.95 3.65 6.67
tai15b 0.14 0.06 0.55 0.71
tai40a 1.20 0.37 2.59 5.41
tai40b 9.11 4.95 12.47 22.33

Avg ARPD on QAP 3.01 1.58 4.81 8.78
Avg Rank on QAP 2 1 3 4

TSP

fri26 11.24 8.42 30.45 34.96
bays29 7.64 11.69 36.93 41.87
dantzig42 29.32 17.04 34.92 6.66
berlin52 4.29 8.77 43.22 39.72

Avg ARPD on TSP 13.12 11.48 36.38 30.80
Avg Rank on TSP 1.75 2.25 3.5 3
Avg ARPD on all instances 4.62 3.59 13.36 12.09
Avg Rank on all instances 1.94 1.19 3.44 3.44
Friedman+Finner p-value < 10−2 best < 10−11 < 10−11

Table IV largely confirms the indications of the previous
comparison. Indeed, APSO-i is again the best algorithm with
high statistical evidence, and the worst algebraic scheme is
better than the best random key PSO on 15 instances over 16.
Again, the deceptive instance is “dantzig42”. Other differences
with respect to the results provided in Table III are: (i) APSO
obtains a better average rank with respect to APSO-i on the
TSP problem, and (ii) PSO+RK obtains the same overall rank

of PSO+RKI.
In conclusion, either considering an equal number of fit-

ness evaluations or an equal amount of computational time,
algebraic algorithms clearly outperform the random key based
PSOs, and, in particular, the inertia-preserving APSO-i seems
to be the reference PSO scheme for permutation-based com-
binatorial optimization problems.

VI. CONCLUSION AND FUTURE WORK

In this paper, an Algebraic Particle Swarm Optimization
(APSO) scheme for permutation-based optimization problems
has been introduced.

The design of APSO is based on an algebraic framework
for combinatorial optimization with strong mathematical foun-
dations. The algebraic operators allow APSO to simulate
the dynamics of continuous PSO in the search space of
permutations. In particular, in APSO both the positions and
velocities of the particles are directly represented as permu-
tations. Indeed, the underlying algebraic framework allows to
interpret a permutation, not only as candidate solution, but also
as a displacement (“vector”) between solutions.

Two variants of APSO have been proposed. The first one
directly introduces the algebraic framework in the classical
PSO move equations. However, pathological situations of this
approach have been illustrated, and a second variant of APSO,
i.e., APSO-i, has been proposed to address these cases. In
APSO-i, the inertial term of the velocity update rule is handled
analogously as in the continuous PSO.

Experiments have been held to compare the performances of
the proposed APSO algorithms with the other PSO schemes
for permutation problems in literature. In particular, APSOs
have been compared with the random key based PSO schemes.
Commonly adopted benchmark instances from four popular
permutation problems have been considered. The experimental
results clearly show, with high statistical evidence, that APSO
outperforms the competitor algorithms.

Possible future lines of research include: a further inves-
tigation of the non-commutativity of the velocity terms, the
introduction of other generating sets in APSO, the design of
a binary APSO scheme, and the hybridization of APSO with
other improving techniques.

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of
IEEE International Conference on Neural Networks, vol. 4, 1995, pp.
1942–1948.

[2] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: An
overview,” Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[3] Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez,
and R. G. Harley, “Particle swarm optimization: Basic concepts, variants
and applications in power systems,” IEEE Transactions on Evolutionary
Computation, vol. 12, no. 2, pp. 171–195, 2008.

[4] J. Kennedy and R. C. Eberhart, “A discrete binary version of the
particle swarm algorithm,” in Proc. of IEEE International Conference
on Systems, Man, and Cybernetics, vol. 5, 1997, pp. 4104–4108.

[5] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz, “A particle
swarm optimization algorithm for makespan and total flowtime mini-
mization in the permutation flowshop sequencing problem,” European
Journal of Operational Research, vol. 177, no. 3, pp. 1930–1947, 2007.

[6] T. J. Ai and V. Kachitvichyanukul, “A particle swarm optimization for
the vehicle routing problem with simultaneous pickup and delivery,”
Computers & Operations Research, vol. 36, no. 5, pp. 1693–1702, 2009.

[7] G. Koulinas, L. Kotsikas, and K. Anagnostopoulos, “A particle swarm
optimization based hyper-heuristic algorithm for the classic resource
constrained project scheduling problem,” Information Sciences, vol. 277,
pp. 680–693, 2014.

[8] H. Gao, S. Kwong, B. Fan, and R. Wang, “A hybrid particle-swarm
tabu search algorithm for solving job shop scheduling problems,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2044–2054,
2014.

[9] J. C. Bean, “Genetic algorithms and random keys for sequencing and
optimization,” ORSA Journal on Computing, vol. 6, no. 2, pp. 154–160,
1994.

[10] V. Santucci, M. Baioletti, and A. Milani, “Algebraic differential evolu-
tion algorithm for the permutation flowshop scheduling problem with
total flowtime criterion,” IEEE Transactions on Evolutionary Computa-
tion, vol. 20, no. 5, pp. 682–694, 2016.

[11] ——, “Solving permutation flowshop scheduling problems with a dis-
crete differential evolution algorithm,” AI Communications, vol. 29,
no. 2, pp. 269–286, 2016.

[12] M. Baioletti, A. Milani, and V. Santucci, “An extension of algebraic
differential evolution for the linear ordering problem with cumulative
costs,” in Proc. of 14th International Conference on Parallel Problem
Solving from Nature, 2016, pp. 123–133.

[13] V. Santucci, M. Baioletti, and A. Milani, “A differential evolution
algorithm for the permutation flowshop scheduling problem with total
flow time criterion,” in Parallel Problem Solving from Nature – PPSN
XIII: 13th International Conference, Ljubljana, Slovenia, September 13-
17, 2014. Proceedings. Springer International Publishing, 2014, pp.
161–170.

[14] M. Baioletti, A. Milani, and V. Santucci, “Linear ordering optimization
with a combinatorial differential evolution,” in 2015 IEEE International
Conference on Systems, Man, and Cybernetics, 2015, pp. 2135–2140.

[15] ——, “A discrete differential evolution algorithm for multi-objective
permutation flowshop scheduling,” Intelligenza Artificiale, vol. 10, no. 2,
pp. 81–95, 2016.

[16] D. Bratton and J. Kennedy, “Defining a standard for particle swarm
optimization,” in Proc. of IEEE Swarm Intelligence Symposium, 2007,
pp. 120–127.

[17] T. Schiavinotto and T. Stützle, “A review of metrics on permutations for
search landscape analysis,” Computers & Operations Research, vol. 34,
no. 10, pp. 3143–3153, 2007.

[18] R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic algorithms for the
traveling salesman problem,” in Proc. of 1st International Conference
on Genetic Algorithms and their Applications, 1985, pp. 160–165.

[19] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Proc. of LION-5
(Learning and Intelligent Optimization Conference), 2011, pp. 507–523.

[20] M. Birattari, Tuning Metaheuristics: A Machine Learning Perspective.
Springer, 2009.

[21] J. Derrac, S. Garca, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm and
Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

