
A new precedence-based Ant Colony
Optimization for permutation problems

Marco Baioletti1, Alfredo Milani1,2, and Valentino Santucci1

1 Department of Mathematics and Computer Science, University of Perugia, Italy
2 Department of Computer Science, Hong Kong Baptist University, Hong Kong

{marco.baioletti,alfredo.milani,valentino.santucci}@unipg.it

Abstract. In this paper we introduce ACOP, a novel ACO algorithm for
solving permutation based optimization problems. The main novelty is in
how ACOP ants construct a permutation by navigating the space of par-
tial orders and considering precedence relations as solution components.
Indeed, a permutation is built up by iteratively adding precedence rela-
tions to a, initially empty, partial order of items until it becomes a total
order, thus the corresponding permutation is obtained. The pheromone
model and the heuristic function assign desirability values to precedence
relations. An ACOP implementation for the Linear Ordering Problem
(LOP) is proposed. Experiments have been held on a large set of widely
adopted LOP benchmark instances. The experimental results show that
the approach is very competitive and it clearly outperforms previous
ACO proposals for LOP.

Keywords: Ant Colony Optimization, Permutations Representation,
Partial Orders, Linear Ordering Problem

1 Introduction

Ant Colony Optimization (ACO) [6] is a popular meta-heuristic scheme for solv-
ing hard combinatorial optimization problems inspired by the foraging behavior
of natural ant colonies. Since the seminal work of Dorigo in the early ’90s [8],
ACO has been extensively and successfully applied to permutation-based opti-
mization problems, i.e., problems where a solution is a permutation of items. See
for example the several ACO proposals for the traveling salesman problem [8, 7],
the quadratic assignment problem [9] or the permutation flowshop scheduling
problem [19].

The typical ACO approach to permutation problems is to consider the items
(to be ordered) as the solution components. Therefore, an artificial ant con-
structs a n-length permutation by starting from the empty sequence and itera-
tively adding up items until all the n items appear in the sequence exactly once.
Usually, the items are sequentially inserted from left to right, though simple
variations, where the items can be inserted in arbitrary positions of the (partial)
permutation, have been proposed [15].



2 Baioletti, Milani, Santucci

To the best of our knowledge, this construction scheme is applied by all the
ACO proposals for permutation problems available in literature. Basically, they
all represent a permutation of n items directly as a n-length sequence without
repetitions, thus, during the construction process, a partial solution is a sequence
containing empty slots.

Though this representation is very natural, it is not always the most suited
for the problem at hand. This is the case of the objective functions defined by
means of non-local characteristics such as the precedence relations between the
pairs of items contained in a permutation. Indeed, precedences are important in
a variety of problems such as some scheduling problems [3, 14] and, in partic-
ular, in the Linear Ordering Problem (LOP) [16] where the objective function
is defined as the sum of the contributions associated to all the precedences en-
coded by a permutation. It is evident that, in this case, adding a new item to a
partial sequence induces a drastic change to the expected objective value of the
permutation under construction.

In this paper, we propose the smoother approach of constructing a permuta-
tion by iteratively adding precedences to a, initially empty, partial order until a
total order, i.e., a permutation, is formed. Basing on this idea, a new precedence-
based ACO approach for permutation problems, namely ACOP, is introduced.
Therefore, the main novelty is that ACOP ants represent a partial permutation,
i.e., a partial order, as a collection of precedence relations (between items) which
are consistent each other. When this collection contains

(
n
2

)
precedences, then a

n-length permutation is mathematically guaranteed to be built.
ACOP has been implemented and applied to LOP. Experiments have been

held on a large set of widely adopted benchmark instances where ACOP per-
formances have been compared to state-of-the-art results. Moreover, a further
experiment has been held to compare ACOP with, as far as we know, the only
ACO approach to LOP available in literature, i.e., ACS-IM [5, 18].

2 Ant Colony Optimization

2.1 ACO General Scheme

ACO algorithms [8, 9, 15] are inspired by the stigmergic foraging behavior of
natural ant colonies. When a real ant discover a food source, it walks back to
its nest by also leaving pheromone trails on the way, so other ants can sense
the trails and reach the food themselves. Analogously, in ACO, artificial ants
build up combinatorial solutions component-by-component using a probabilistic
construction procedure biased by the artificial pheromone trails deposited on
solution components by the best-performing ants of the previous iterations.

Let f : S → R be the objective function to be optimized, where S is the set
of solutions, then each s ∈ S is composed by a certain number of components
c1, c2, . . . , cn taken from the set of possible components C. Clearly, S and C are
problem dependent. For example, in the traveling salesman problem, C is the
set of cities, while S contains all the permutations of C.



A new precedence-based ACO for permutation problems 3

ACO aims to optimize f by iteratively probing S by means of N artificial
ants. The ants indirectly communicate through a common data structure, called
pheromone, which associates a real value τc to each solution component c ∈
C. The main scheme of ACO is depicted in Figure 1, where, without loss of
generality, maximization is assumed.

1: function ACO(N,α, β, ρ,∆ib
τ ,∆

gb
τ )

2: Initialize pheromone values τc for all c ∈ C
3: sgb ← null
4: while termination condition is not met do
5: sib ← null
6: for i← 1 to N do
7: si ← BuildSolution(α, β)
8: Evaluate f(si)
9: if f(si) > f(sib) then

10: sib ← si
11: end if
12: if f(si) > f(sgb) then
13: sgb ← si
14: end if
15: end for
16: Optionally perform a local search on sib (and update sgb)
17: EvaporatePheromone(ρ)
18: DepositPheromone(sib, sgb,∆ib

τ ,∆
gb
τ )

19: end while
20: return sgb

21: end function

Fig. 1. General scheme of ACO

Pheromone values are usually initialized to a constant value. Then, at every
ACO iteration, each ant starts from an empty partial solution and builds up a
complete solution by iteratively choosing components from C. In many problems,
the set Ct of feasible components at construction step t is restricted by the choices
done in the previous steps, thus, in general, Ct ⊆ C. The choice of a component c
from Ct is influenced by its pheromone value τc ∈ R+ and a problem dependent
heuristic value ηc ∈ R+ which estimates the contribution of c to the solution
quality. Formally, the probability of choosing c ∈ Ct is

p(c) =
ταc η

β
c∑

k∈Ct τ
α
k η

β
k

, (1)

where the parameters α, β ∈ R determine the influence of, respectively, pheromone
and heuristic values.

The construction process terminates whenN complete solutions (one per ant)
have been generated. Each solution is evaluated using f and the pheromone is



4 Baioletti, Milani, Santucci

updated. First, for all c ∈ C, the pheromone value τc is evaporated as follows

τc ← (1− ρ)τc, (2)

where ρ ∈ [0, 1] is the evaporation rate parameter. Then, a given amount of
pheromone is deposited on the components belonging to the best solutions.
Though various deposition strategies are possible [15], the most common ones
consider the iteration and global best solutions, respectively, sib and sgb. For-
mally, for all c ∈ C, the pheromone value τc is updated as

τc ← τc + I
(
c ∈ sib

)
∆ib
τ + I

(
c ∈ sgb

)
∆gb
τ , (3)

where: I (c ∈ s) is 1 if component c belongs to solution s and 0 otherwise, while
∆ib
τ , ∆

gb
τ ∈ R+ are the “awards” of pheromones for the components of, respec-

tively, the iteration and global best solutions.
Finally, note that, before pheromone update, a local search refinement can

be optionally applied to a selected set of solutions (usually, the iteration best).

2.2 Pheromone Models for Permutation Problems

While the typical permutation construction procedure of ACO schemes has
been described in Section 1, here we provide a brief overview of the different
pheromone models for permutation problems available in literature [3, 17].

One simple approach, denoted as PHabs in [3], is to associate pheromone
values to pairs composed by an item and an absolute position, in order to indicate
the desirability to have a given item at a given position in the permutation.

Two other relevant approaches are PHsuc and PHrel [3], which both assign
pheromone values to ordered pairs of items. While PHsuc aims to encode the
desirability of having the two items in consecutive positions of the permutation,
PHrel is less stringent and only indicates the desirability of the precedence rela-
tion between the two items independently of their distance in the permutation.

We highlight that, as far as we know, all the ACO proposals in literature
using the pheromone model PHrel build up the permutation as seen in Section
1, i.e., by iteratively adding items to a incumbent sequence till it becomes a
complete permutation.

3 Permutations, partial and total orders

Here, we provide a brief mathematical background useful to describe the rep-
resentation of the (partial) solutions in ACOP. In particular: we introduce an
encoding for generic partial orders of items, we show under which conditions the
partial order is also a total order and how to obtain its corresponding permuta-
tion.

Let I be a finite set of items that, without loss of generality, can be taken
as I = {1, . . . , n}, then a strict partial order relation ≺ on I is a binary relation
which satisfies the following properties:



A new precedence-based ACO for permutation problems 5

– Irreflexivity: a 6≺ a, for all a ∈ I;
– Transitivity: if a ≺ b and b ≺ c, then a ≺ c, for a, b, c ∈ I;
– Anti-symmetry: if a ≺ b, then b 6≺ a, for a, b ∈ I.

As any binary relation, a partial order ≺ on I can be represented as the set of
pairs P = {(a, b) : a, b ∈ I and a ≺ b}, thus the pair (a, b) ∈ P indicates the
precedence a ≺ b.

Conversely, given any finite set of precedences P = {(a1, b1), . . . , (ak, bk)},
where ai, bi ∈ I for i = 1, . . . , k, such that the precedences in P do not violate
any partial order property, it is possible to find the corresponding partial order
≺P on I generated by P , i.e., the smallest partial order which respects all the
precedences in P . Operatively, ≺P is the transitive closure P ∗ of P , which is
computed as follows. Let P0 = P , then

Pr+1 = Pr ∪ {(a, b) : ∃c ∈ I such that (a, c), (c, b) ∈ Pr}. (4)

After a finite number s of steps, the sequence of sets 〈Pr〉r stabilizes (i.e., Ps =
Ps+i for any integer i ≥ 1), because the maximum number of “compatible”
precedences is finite and equal to

(
n
2

)
. Hence, P ∗ = Ps and a ≺P b if and only if

(a, b) ∈ P ∗.
Importantly, the partial order ≺P , represented by a given set of pairs P , can

also be seen as the arcs set of the digraph G≺ whose nodes set is I and such that
there is an arc a → b for each precedence (a, b) ∈ P . Therefore, a partial order
P can be encoded by the n× n incidence matrix A of G≺, whose entries are

Aab =


1 if a ≺ b
−1 if b ≺ a
0 otherwise.

(5)

Furthermore, if ≺ also satisfies the property that for all a, b ∈ I, with a 6= b,
either a ≺ b or b ≺ a, then ≺ is a strict total order. For a total order, the
matrix A does not contain any 0-entry, except in its main diagonal. Moreover,
it contains

(
n
2

)
1-entries and the same number of −1s.

It is easy to see that there is a bijective correspondence between the set of
total orders on I and the set Sn of the permutations of I. Indeed, given π ∈ Sn,
its corresponding total order ≺π is defined as all the precedences a ≺π b such
that a, b ∈ I and a appears before b in π. More formally, a ≺π b if and only if
π−1(a) < π−1(b), where π−1 is the inverse permutation of π. On the other hand,
if ≺ is a total order, the corresponding permutation π≺ is recursively defined as:
(i) π≺(1) = a where a ∈ I is the unique item such that b 6≺ a for every b ∈ I,
and (ii) π≺(k) = a if b ≺ a only for all the b ∈ {π≺(1), . . . , π≺(k − 1)}.

Therefore, given a total order encoded by a matrix A (see equation (5)), the
corresponding permutation π can be recovered by observing that π(k) = a if and
only if the a-th row of A has exactly n−k 1s. Hence, by setting σ(a) to n minus
the number of 1-entries in the a-th row of A, for all a = 1, . . . , n, and observing
that σ is a permutation, then π = σ−1.



6 Baioletti, Milani, Santucci

As a further interpretation, note that a partial order ≺ individuates the set
of permutations Q≺ ⊆ Sn such that π ∈ Q≺ if and only if π agrees with ≺, i.e.,
for all a, b ∈ I, if a ≺ b then π−1(a) < π−1(b).

Finally, given a partial order ≺ and a new pair (c, d), with c, d ∈ I and c 6= d,
such that d 6≺ c, it is possible to extend ≺ with the precedence c ≺ d by simply
computing the transitive closure of the set P≺ ∪ {(c, d)}.

4 ACOP: Ant Colony Optimization on Precedences

ACOP is a new Ant Colony Optimization algorithm for permutation based op-
timization problems which works on the space of partial orders. Its aim is to
optimize an objective function of the form f : Sn → R, where Sn contains all
the permutations of a set I of n items.

The main structure of ACOP follows the same ACO general scheme depicted
in Figure 1. It handles a colony of N artificial ants and uses the pheromone model
PHrel previously described in Section 2.2, i.e., pheromone values are maintained
in a n×n matrix where the entry τa,b, with a, b ∈ I, is the amount of pheromone
assigned to precedence a ≺ b.

The original parts of ACOP are: (i) the (partial) solution representation,
and (ii) the construction procedure performed by the artificial ants, i.e., the
implementation of BuildSolution (see Figure 1).

Indeed, every ant builds up a permutation by iteratively adding precedence
relations to a partial order ≺, which is initially empty, until it becomes a total
order. The pseudo-code of the procedure is depicted in Figure 2.

1: procedure BuildSolution(α, β)
2: A← 0 . All 0s in matrix A
3: np← 0 . Number of precedences in A
4: while np <

(
n
2

)
do

5: C = {(a, b) : Aa,b = 0 and a 6= b} . Candidate set of precedences
6: (a, b)← ChoosePrec(C, τ, η, α, β) . See equation (1)
7: Q← {(a, b)}
8: while Q 6= ∅ do . Insert (a, b) and compute the transitive closure
9: (a, b)← remove an element from Q

10: Aa,b ← 1
11: Ab,a ← −1
12: np← np+ 1
13: Q← Q ∪ {(a, c) : Aa,c = 0 and Ab,c = 1}
14: ∪ {(c, b) : Ac,b = 0 and Ac,a = 1}
15: end while
16: end while
17: Return A
18: end procedure

Fig. 2. The permutation construction procedure of ACOP



A new precedence-based ACO for permutation problems 7

The matrix A encodes the partial order ≺ that is initially empty, while the
variable np is the number of 1s in A, i.e., the number of precedences of ≺. The
loop of lines 4–16 iteratively adds 1-entries to A and terminates when A contains
exactly

(
n
2

)
1-entries, i.e., when A encodes a total order which corresponds to

a permutation. At each construction step, the ant chooses a precedence from
C (line 5). This precedence can be safely added to ≺. The choice of line 6 is
performed by considering pheromone and heuristic values as in the general ACO
scheme provided in equation (1). The inner loop at lines 8–15 inserts the selected
precedence in ≺, by removing some 0-entries from A and iteratively computing
the transitive closure on A as described in Section 3. Finally, though, at the
end of the procedure, the matrix A can be converted to a permutation (see
Section 3), some objective functions can be directly computed on A, therefore
BuildSolution returns the matrix A.

5 Application of ACOP to LOP

The Linear Ordering Problem (LOP) is a classical NP-Hard combinatorial op-
timization problem [16] and has received considerable attention because of its
many applications in diverse research fields such as economy [13], graph theory
[4], archeology [10] and computational social choice [12].

LOP can be straightforwardly formulated as a matrix triangulation problem
[16]. Given a n×n matrix H, LOP requires to find a permutation π ∈ Sn of the
row and column indices {1, . . . , n} that maximizes the objective function

f(π) =

n∑
i=1

n∑
j=i+1

Hπ(i),π(j) (6)

The permutation structure of the LOP solutions allows to apply a variety of
meta-heuristics and evolutionary algorithms specifically designed for the permu-
tations search space. See for instance [1, 2, 11, 20]. To the best of our knowledge,
the only ACO approach to LOP has been proposed by Pintea et al. in [5] and
[18].

An interesting observation is that the objective function of LOP can be di-
rectly computed on the permutation representation used by ACOP, i.e., on the
matrix A returned by the function BuildSolution depicted in Figure 2. Indeed,
it is easy to see that equation (6) can rewritten as

f(A) =

n∑
a=1

n∑
b=1

Ha,b ·max{Aa,b, 0}. (7)

Here, it is evident that the contribution of any single precedence relation (a, b)
present in the permutation to be evaluated is exactly Ha,b. Hence, a simple but
effective choice for the heuristic function ηa,b is to set ηa,b = Ha,b + ε, where ε is
a small positive quantity introduced to avoid null probabilities when Ha,b = 0.



8 Baioletti, Milani, Santucci

Further details of the implementation of ACOP for LOP are as follows.
Pheromone is deposited using a mix of the iteration-best and global-best strate-
gies as depicted by equation (3). Inspired by [21], the pheromone values are
constrained to the interval [τmin, τmax], where τmax = (∆ibτ +∆gbτ )/ρ and τmin =
τmax/(2n2−n). All the pheromones are initialized to τmax. ChoosePrec (line 6
of Figure 2) has been implemented as in [7], i.e., with probability q0 the most
probable precedence is chosen, otherwise a tournament is performed. Precedence
probabilities are computed as in equation (1).

Finally, an enhanced variant of ACOP, called ACOP+, has been devised.
ACOP+ performs a local search refinement on the iteration best solution at the
end of every iteration. The local search has been implemented by iteratively ap-
plying the best item insertion move till no improvement is observed (see [16]).
Moreover, in order to avoid stagnation, ACOP+ reinitializes the pheromone val-
ues if no improvement to the global best solution has been observed during the
last r iterations.

6 Experiments

The ACOP application to LOP has been experimentally investigated on the
three widely known benchmark suites LOLIB, SGB and MB3. Therefore, a total
of 105 LOP instances, with dimensionalities ranging from 44 to 250, has been
considered.

The optima of these instances are known4 and they have been used to com-
pute two performance measures: the success rate (SR), and the average relative
percentage deviation (ARPD). An algorithm is executed k times per instance,
thus SR indicates the percentage of executions that reach the known optimum,
while ARPD = 100

k

∑k
i=1

opt−runi
opt is the average percentage deviation from the

known optimum.
ACOP parameters have been experimentally tuned on a subset of 10 se-

lected instances: the (lexicographically) first instances for every dimensional-
ity available in the benchmarks. A set of settings have been individuated by
some preliminary experiments, then a full factorial experimental design has
been considered in order to choose the best setting. The involved parameters
and their values are: N ∈ {20, 50, 100}, α, β ∈ {1, 2}, ρ ∈ {0.05, 0.1, 0.2},
q0 ∈ {0, 0.01, 0.1}, and

(
∆ib
τ , ∆

gb
τ

)
∈ {(10, 0), (7.5, 2.5)}. Therefore, a total of

216 settings have been tested by performing 10 executions per instance with
a termination criterion of 60 seconds. Then, the average rank of the ARPDs
obtained in every instance are computed and the setting with the best av-
erage rank is chosen as the reference configuration of ACOP. This setting is(
N = 20, α = 2, β = 2, ρ = 0.05, q0 = 0.1, (∆ib

τ , ∆
gb
τ ) = (7.5, 2.5)

)
.

The tuned setting has been used both for ACOP and ACOP+. The further
parameter r of ACOP+ has been set to r = 50. Then, ACOP and ACOP+ have

3 The instances are available from http://www.optsicom.es/lolib.
4 During the years and using a considerably large amount of computational time, they

have been proved to be optima using exact methods [16].



A new precedence-based ACO for permutation problems 9

been executed 20 times on every instance. The termination criteria adopted
are: 120 seconds for LOLIB instances, 300 seconds for SGB instances, and 600
seconds for the larger MB instances. All the experiments have been run on a
homogeneous cluster of computers equipped with Intel Xeon X5650 processors
clocking at 2.67GHz. The SR, ARPD and the median time where the global best
solution has been found are reported in Tables 1 (LOLIB) and 2 (SGB and MB).

Table 1. Experimental Results on LOLIB instances

Instance ACOP ACOP+ Instance ACOP ACOP+

Name n SR ARPD Time SR ARPD Time Name n SR ARPD Time SR ARPD Time

N-t59b11xx 44 95 0.0004 0.437 100 0 0.133 N-t75d11xx 44 40 0.0009 4.145 100 0 0.089
N-t59d11xx 44 100 0 0.319 100 0 0.038 N-t75e11xx 44 100 0 0.854 100 0 0.046
N-t59f11xx 44 100 0 0.303 100 0 0.061 N-t75i11xx 44 100 0 1.463 100 0 0.227
N-t59i11xx 44 100 0 0.140 100 0 0.024 N-t75k11xx 44 100 0 0.330 100 0 0.024
N-t59n11xx 44 100 0 0.026 100 0 0.020 N-t75n11xx 44 100 0 0.138 100 0 0.022
N-t65b11xx 44 0 0.0163 1.003 100 0 0.115 N-t75u11xx 44 100 0 0.196 100 0 0.024
N-t65d11xx 44 100 0 0.467 100 0 0.056 N-be75eec 50 100 0 0.553 100 0 0.081
N-t65f11xx 44 100 0 0.195 100 0 0.023 N-be75np 50 0 0.0062 18.025 15 0.0002 0.172
N-t65i11xx 44 100 0 0.298 100 0 0.070 N-be75oi 50 75 0.0003 45.038 80 0.0002 0.090
N-t65l11xx 44 100 0 0.007 100 0 0.010 N-be75tot 50 90 0.0003 1.031 100 0 0.214
N-t65n11xx 44 100 0 0.191 100 0 0.051 N-tiw56n54 56 95 < 0.0001 1.493 100 0 0.780
N-t65w11xx 44 100 0 0.345 100 0 0.023 N-tiw56n58 56 100 0 0.767 100 0 0.312
N-t69r11xx 44 100 0 0.067 100 0 0.024 N-tiw56n62 56 95 0.0011 1.780 95 0.0011 0.183
N-t70b11xx 44 100 0 0.295 100 0 0.028 N-tiw56n66 56 100 0 1.618 100 0 0.130
N-t70d11xx 44 10 0.0012 0.654 100 0 0.022 N-tiw56n67 56 60 0.0891 8.158 90 0.0218 0.364
N-t70d11xxb 44 100 0 0.675 100 0 0.047 N-tiw56n72 56 65 0.0008 28.039 100 0 0.259
N-t70f11xx 44 100 0 0.145 100 0 0.043 N-tiw56r54 56 60 0.0017 2.643 95 0.0009 0.637
N-t70i11xx 44 100 0 0.227 100 0 0.087 N-tiw56r58 56 100 0 1.509 100 0 0.186
N-t70k11xx 44 60 0.0041 0.907 100 0 0.039 N-tiw56r66 56 100 0 1.892 100 0 0.151
N-t70l11xx 44 100 0 0.033 100 0 0.043 N-tiw56r67 56 55 0.0002 1.610 100 0 0.089
N-t70n11xx 44 100 0 0.150 100 0 0.023 N-tiw56r72 56 95 < 0.0001 1.503 100 0 0.101
N-t70u11xx 44 100 0 0.019 100 0 0.019 N-stabu70 60 0 0.0242 4.791 80 0.0052 1.670
N-t70w11xx 44 100 0 0.322 100 0 0.023 N-stabu74 60 35 0.0160 5.059 100 0 0.913
N-t70x11xx 44 100 0 0.464 100 0 0.023 N-stabu75 60 15 0.0418 4.303 95 0.0007 0.994
N-t74d11xx 44 45 0.0010 1.187 100 0 0.046 N-usa79 79 10 0.0306 25.779 30 0.0051 6.902

LOLIB Average 80 0.0047 3.432 96 0.0007 0.316

Tables 1 and 2 clearly show that both ACOP and ACOP+ obtained remark-
able performances throughout all the instances of the benchmark suites consid-
ered. Regarding the success rates, ACOP obtained the optimum in at least one
execution (SR>0) on about the 57% of the instances, while ACOP+ reached
the instance optimum on all the 105 instances. Moreover, in 63 cases, ACOP+

reached the optimum in all the executions performed (SR=100). Most notably,
also when the optimum is not reached, the very small ARPDs clearly show that
both ACOP and ACOP+ have been able to obtain very high quality solutions.
Indeed, the worst ARPD of ACOP, obtained in the N-sgb75.19 instance (see Ta-
ble 2), is of only the 0.1057%, while for ACOP+ it is even smaller, i.e., 0.0218%
in N-tiw56n57 (see Table 1). Furthermore, though the computational time to
reach the best solution increases with the instance size n, the average times re-
ported at the end of the tables show that the two algorithms are able to provide
high quality solutions in a reasonable amount of time.



10 Baioletti, Milani, Santucci

Table 2. Experimental Results on SGB (left) and MB (right) instances

Instance ACOP ACOP+ Instance ACOP ACOP+

Name n SR ARPD Time SR ARPD Time Name n SR ARPD Time SR ARPD Time

N-sgb75.01 75 0 0.0670 17.789 50 0.0063 2.983 N-r100a2 100 0 0.0155 29.261 65 0.0005 10.407
N-sgb75.02 75 0 0.0551 33.936 35 0.0002 6.568 N-r100b2 100 0 0.0224 31.812 5 0.0054 10.828
N-sgb75.03 75 0 0.0197 25.826 100 0 1.570 N-r100c2 100 0 0.0375 40.122 25 0.0053 13.498
N-sgb75.04 75 0 0.0225 28.953 100 0 1.509 N-r100d2 100 90 0.0003 24.370 100 0 6.515
N-sgb75.05 75 0 0.0413 41.994 100 0 1.252 N-r100e2 100 10 0.0015 27.703 75 0.0002 7.730
N-sgb75.06 75 0 0.0291 23.843 70 < 0.0001 8.384 N-r150a0 150 70 0.0004 84.635 100 0 29.493
N-sgb75.07 75 0 0.0311 18.408 100 0 0.932 N-r150a1 150 0 0.0157 137.665 15 0.0005 58.211
N-sgb75.08 75 0 0.0341 28.849 100 0 2.774 N-r150b0 150 65 0.0002 74.576 100 0 8.287
N-sgb75.09 75 0 0.0166 69.700 50 0.0016 68.278 N-r150b1 150 0 0.0051 115.006 5 0.0019 36.030
N-sgb75.10 75 0 0.0413 54.677 100 0 2.720 N-r150c0 150 55 0.0007 84.107 100 0 13.054
N-sgb75.11 75 0 0.0841 28.972 50 0.0003 48.659 N-r150c1 150 5 0.0051 129.176 95 0.0001 47.817
N-sgb75.12 75 0 0.0272 14.141 100 0 2.418 N-r150d0 150 0 0.0044 102.742 90 < 0.0001 31.073
N-sgb75.13 75 0 0.0125 28.362 30 0.0001 4.894 N-r150d1 150 0 0.0079 140.940 35 0.0011 72.893
N-sgb75.14 75 0 0.0258 46.338 60 0.0001 3.622 N-r150e0 150 100 0 71.879 100 0 7.742
N-sgb75.15 75 0 0.0850 34.499 90 0.0009 27.441 N-r150e1 150 5 0.0097 139.383 95 0.0001 50.005
N-sgb75.16 75 0 0.0379 16.061 100 0 3.171 N-r200a0 200 0 0.0016 340.860 100 0 70.777
N-sgb75.17 75 0 0.0545 44.567 100 0 1.640 N-r200a1 200 0 0.0042 403.498 95 < 0.0001 140.697
N-sgb75.18 75 0 0.0435 54.402 70 0.0001 2.671 N-r200b0 200 0 0.0024 335.645 100 0 178.688
N-sgb75.19 75 0 0.1057 19.253 90 < 0.0001 4.057 N-r200b1 200 0 0.0099 374.202 10 0.0009 221.687
N-sgb75.20 75 0 0.0415 14.087 70 < 0.0001 2.573 N-r200c0 200 0 0.0029 305.989 45 0.0003 87.9785
N-sgb75.21 75 0 0.0453 18.634 75 < 0.0001 6.069 N-r200c1 200 0 0.0036 349.472 100 0 89.4125
N-sgb75.22 75 0 0.0839 37.686 100 0 1.579 N-r200d0 200 0 0.0015 317.184 100 0 126.250
N-sgb75.23 75 0 0.0320 73.893 90 0.0005 4.519 N-r200d1 200 0 0.0160 459.413 5 0.0025 169.497
N-sgb75.24 75 0 0.0505 65.582 70 0.0001 6.877 N-r200e0 200 25 0.0004 276.738 100 0 55.321
N-sgb75.25 75 0 0.0613 40.212 80 0.0019 2.638 N-r200e1 200 20 0.0016 306.774 55 0.0004 140.123

N-r250a0 250 15 0.0009 522.939 95 < 0.0001 148.343
N-r250b0 250 5 0.0006 528.481 75 < 0.0001 369.338
N-r250c0 250 10 0.0007 528.663 100 0 168.833
N-r250d0 250 0 0.0034 557.957 95 < 0.0001 318.197
N-r250e0 250 0 0.0024 556.871 80 < 0.0001 361.753

SGB Average 0 0.0460 35.227 79 0.0005 8.792 MB Average 16 0.0060 246.602 72 0.0006 101.683

Finally, a comparison with the ACO algorithm for LOP proposed in [18],
namely ACS-IM, has been performed. The results for ACS-IM have been directly
taken from its original paper [18], while ACOP and ACOP+ have been run for
20 executions on their same set of 49 instances (old non-normalized LOLIB
instances5). The termination criterion has been set to 50 000 iteration as in [18].
The ARPD results are provided in Table 3.

The comparison reported in Table 3 clearly shows that ACOPs perform
largely better than ACS-IM, thus promoting our proposal as the first promi-
nent ACO approach to the linear ordering problem.

7 Conclusion and Future Work

ACOP, a new precedence-based ACO algorithm for permutation problems, has
been proposed.

With respect to other proposals in literature, the main novelty of ACOP is to
consider a permutation as a total order which is obtained through an incremental
refinement of a, initially empty, partial order. The refinement process works by

5 Non-normalized LOLIB instances are available at https://www.iwr.uni-
heidelberg.de/groups/comopt/software/LOLIB.



A new precedence-based ACO for permutation problems 11

Table 3. Experimental Comparison with ACS-IM on non-normalized LOLIB instances

Instance n ACOPACOP+ ACS-IM Instance n ACOP ACOP+ ACS-IM

t59b11xx 44 0.0097 0 0.08 t75d11xx 44 0.0018 0 0.59
t59d11xx 44 0.0043 0 0.03 t75e11xx 44 0.0009 0 0.21
t59f11xx 44 0.0061 0 0.02 t75i11xx 44 0.0108 0 0.05
t59i11xx 44 0.0001 0 0.06 t75k11xx 44 0.0163 0 0.02
t59n11xx 44 0 0 0.19 t75n11xx 44 0 0 0.04
t65b11xx 44 0.0405 0 0.09 t75u11xx 44 0.0007 0 0.08
t65d11xx 44 0.0066 0 0.18 be75eec 50 0.0004 0 0.16
t65f11xx 44 0.0016 0 0.14 be75np 50 0.0089 0.0002 0.0004
t65i11xx 44 0.0102 0 0.19 be75oi 50 0.0023 0.0005 0.004
t65l11xx 44 0 0 0.03 be75tot 50 0.0037 0.0001 0.12
t65n11xx 44 0.0441 0 0.16 tiw56n54 56 0.0039 0 0.13
t65w11xx 44 0.0033 0 0.14 tiw56n58 56 0.0024 0 0.15
t69r11xx 44 0 0 0.41 tiw56n62 56 0.0068 0 0.08
t70b11xx 44 0.0043 0 0.03 tiw56n66 56 0.0057 0 0.13
t70d11xn 44 0.0095 0 0.05 tiw56n67 56 0.1623 0 0.45
t70d11xx 44 0.0005 0 0.13 tiw56n72 56 0.0106 0.0002 0.17
t70f11xx 44 0 0 0.16 tiw56r54 56 0.0057 0.0003 0.19
t70i11xx 44 0 0 0.15 tiw56r58 56 0.0085 0 0.16
t70k11xx 44 0.0084 0 0.05 tiw56r66 56 0.0086 0 0.09
t70l11xx 44 0 0 0.24 tiw56r67 56 0.0101 0 0.39
t70n11xx 44 0 0 0.1 tiw56r72 56 0.0630 0 0.11
t70u11xx 44 0.0015 0 0.07 stabu1 60 0.0665 0.0015 0.26
t70w11xx 44 0.0021 0 0.04 stabu2 60 0.0714 0 0.27
t70x11xx 44 0.0026 0 0.02 stabu3 60 0.0600 0 0.27
t74d11xx 44 0.0051 0 0.24

Average 0.0141 < 0.0001 0.1454

iteratively adding up a selected precedence relations together with the induced
precedences. Also the pheromone model and the heuristic values are defined on
the precedence relations.

This approach is particularly suited for those permutation problems where
the precedence relations play an important role, for instance in the linear order-
ing problem (LOP). An ACOP implementation for LOP is then proposed and
experimentally validated on a wide set of popular LOP benchmark instances.
ACOP is competitive with the state-of-the-art results and clearly outperform
the previous ACO proposals for LOP.

Future research directions are: a thorough investigation of the pheromone
update strategies in ACOP, the application to other permutation problems and
the proposal of a ACO scheme for problems where the solutions are partial
orders.

References

1. Baioletti, M., Milani, A., Santucci, V.: Algebraic particle swarm optimization for
the permutations search space. In: IEEE Congress on Evolutionary Computation
CEC 2017 (in press)

2. Baioletti, M., Milani, A., Santucci, V.: Linear ordering optimization with a
combinatorial differential evolution. In: Proc. of 2015 IEEE International Con-



12 Baioletti, Milani, Santucci

ference on Systems, Man, and Cybernetics, SMC 2015. pp. 2135–2140 (2015),
http://dx.doi.org/10.1109/SMC.2015.373

3. Blum, C., Sampels, M.: Ant colony optimization for fop shop scheduling: a case
study on different pheromone representations. In: Proc. of the 2002 Congress on
Evolutionary Computation, CEC 2002. vol. 2, pp. 1558–1563 (2002)

4. Charon, I., Hudry, O.: An updated survey on the linear ordering problem for-
weighted or unweighted tournaments. Annals of Op. Res. 175(1), 107–158 (2010)

5. Chira, C., Pintea, C.M., Crisan, G.C., Dumitrescu, D.: Solving the linear order-
ing problem using ant models. In: Proc. of the 11th Conference on Genetic and
Evolutionary Computation, GECCO 2009. pp. 1803–1804. ACM, New York (2009)

6. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. IEEE Computa-
tional Intelligence Magazine 1(4), 28–39 (2006)

7. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Trans. on Evol. Comput. 1(1),
53–66 (1997)

8. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics) 26(1), 29–41 (1996)

9. Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the quadratic as-
signment problem. Journal of the Oper. Res. Society 50(2), 167–176 (1999)

10. Glover, F., Klastorin, T., Kongman, D.: Optimal weighted ancestry relationships.
Management Science 20(8), 1190–1193 (1974)

11. Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms forcom-
binatorial optimization. Journal of Heuristics 17(5), 487–525 (2011)

12. Kemeny, J.G.: Mathematics without numbers. Daedalus 88(4), 577–591 (1959)
13. Leontief, W.W., Leontief, W.: Input-output economics. Oxford Univ. Press (1986)
14. Li, K., Tang, X., Veeravalli, B., Li, K.: Scheduling precedence constrained stochas-

tic tasks on heterogeneous cluster systems. IEEE Transactions on Computers 64(1),
191–204 (2015)

15. López-Ibánez, M., Stützle, T., Dorigo, M.: Ant colony optimization: A component-
wise overview. Techreport, IRIDIA, Universite Libre de Bruxelles (2015)

16. Mart́ı, R., Reinelt, G.: The linear ordering problem: exact and heuristic methods
in combinatorial optimization. Springer Science & Business Media (2011)

17. Montgomery, J., Randall, M., Hendtlass, T.: Solution bias in ant colony optimisa-
tion: Lessons for selecting pheromone models. Computers & Operations Research
35(9), 2728–2749 (2008)

18. Pintea, C.M., Crisan, G.C., Chira, C., Dumitrescu, D.: A hybrid ant-based ap-
proach to the economic triangulation problem for input-output tables. In: Proc. of
Hybrid Art. Int. Systems, HAIS 2009. pp. 376–383. Springer, Berlin (2009)

19. Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs. European Journal of Op-
erational Research 155(2), 426–438 (2004)

20. Santucci, V., Baioletti, M., Milani, A.: Algebraic differential evolution algorithm
for the permutation flowshop scheduling problem with total flowtime criterion.
IEEE Transactions on Evolutionary Computation 20(5), 682–694 (2016), http:

//dx.doi.org/10.1109/TEVC.2015.2507785

21. Stützle, T., Hoos, H.H.: Maxmin ant system. Future Generation Computer Systems
16(8), 889–914 (2000)


