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Abstract—This work introduces an original algebraic approach
to Differential Evolution algorithms for combinatorial search
spaces. An abstract algebraic differential mutation for generic
combinatorial spaces is defined by exploiting the concept of
finitely generated group. This operator is specialized for the
permutations space by means of an original randomized bubble
sort algorithm. Then, a discrete Differential Evolution algo-
rithm is derived for permutation problems and it is applied
to the permutation flowshop scheduling problem with the total
flowtime criterion. Other relevant components of the proposed
algorithm are: a crossover operator for permutations, a novel
biased selection strategy, a heuristic-based initialization and a
memetic restart procedure. Extensive experimental tests have
been performed on a widely accepted benchmark suite in order to
analyze the dynamics of the proposed approach and to compare
it with the state-of-the-art algorithms. The experimental results
clearly show that the proposed algorithm reaches state-of-the-
art performances and, most remarkably, it is able to find some
new best known results. Furthermore, the experimental analysis
on the impact of the algorithmic components shows that the
two main contributions of this work, i.e., the discrete differential
mutation and the biased selection operator, greatly contribute to
the overall performance of the algorithm.

Index Terms—Differential Evolution, Permutations Space, Per-
mutation Flowshop Scheduling, Algebraic Differential Mutation.

I. INTRODUCTION

The Permutation Flowshop Scheduling Problem (PFSP) is
one of the most studied scheduling problems in computer sci-
ence and operational research both for its practical applications
and its theoretical aspects [1].

In PFSP, aset J = {1,...,n} of n jobs has to be scheduled
on aset M = {1,...,m} of m machines. M is provided
with a fixed order and each job has to visit, in order, all the
machines. The given processing time of job j € J on machine
1 € M is p; ;. Every machine can process only one job at
a time. Preemption and job-passing are not allowed. PFSP
requires to find an ordering on the jobs in order to optimize a
given objective function expressed in terms of the processing
times. Formally, a PFSP solution 7 is the permutation of jobs
(r(1),...,m(n)), where w(k) € J, with 1 < k < n, indicates
the job at position k£ in 7. In this work, we consider the

The authors are all with the Department of Mathematics and Com-
puter Science, University of Perugia, via Vanvitelli 1, 06123 Perugia,
Italy. Alfredo Milani is also with the Department of Computer Science,
Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR China.
Email addresses: valentino.santucci@dmi.unipg.it, marco.baioletti@unipg.it,
alfredo.milani @unipg.it.

Total Flow Time (TFT) criterion, i.e., the minimization of the
objective function

n

f(m) = elm,(j))

j=1

(D

where ¢(i, w(k)) is the completion time of the job (k) on the
machine ¢ and it is recursively defined as

c(i,m(k)) = Pix(r) + max{c(i,m(k — 1)), c(i — 1,7(k))}
when i > 1 and k& > 1, while the terminal cases are:

ifi=k=1,
ifi=1and k > 1,
ifi>1and k =1.

c(i,m(k)) = Pi,x(k)
c(i,m(k)) = Pin(r) + c(i,m(k — 1))
c(i, m(k)) = Piagr) + c(i — 1,7(k))

Compared with the classical makespan criterion, TFT can be
seen as a customers oriented objective and it has recently
received an increasing interest [2], [3]. In the following we
will refer to PFSP with the TFT criterion as PFSP-TFT.

PFSP-TFT has been proved to be NP-hard for m > 2 [1].
Since then, many researches have been devoted to finding
high quality solutions by means of heuristic or meta-heuristic
approaches [2], [3]. Among them, also Differential Evolution
(DE) schemes have been applied to PFSP problems. However,
the original DE [4] scheme addresses continuous optimization
problems where solutions are represented by numerical vec-
tors. Therefore, all the DE applications to PFSP proposed in
the literature adopt some transformation scheme to encode a
permutation as a numerical vector (see for example [5], [6]).
A drawback of this approach is that a single permutation of
jobs can be represented by a potentially infinite number of
continuous solutions, thus inducing a one-to-many mapping
from the phenotypic space (jobs permutations) to the genotypic
space (numerical vectors). As a consequence, large plateaus
are introduced in the search landscape and this is probably the
main reason of the poor performances of these DE schemes
on PFSP problems.

In this paper, we propose a new fully discrete DE for
Permutation spaces (DEP) that directly represents solutions
as permutations. Therefore, no distinction between phenotypic
and genotypic spaces is made. An initial work in this direction
has been already presented in [7].

DEP is conceived around an algebraic design of the differ-
ential mutation operator, which is generally considered the key
component of DE [8]. Classical differential mutation works in
numerical spaces by exploiting the self-adaptive distribution
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of the numerical differences among the solutions in the DE
population [8]. However, the concept of solutions difference
cannot be straightforwardly transferred to a combinatorial
search space. To address this issue, we introduce an abstract
and algebraic-based scheme that allows to define a difference
operator between combinatorial objects and, consequently, to
design a discrete differential mutation operator which inherits
most of the properties of its numerical counterpart. The only
requirement we impose is that the combinatorial search space
must be representable by means of a finitely generated group.
This is the case of the permutations search space of PFSP
problems.

The abstract algebraic differential mutation operator has
been specialized for the symmetric group of permutations
by means of an original randomized bubble sort (RandBS)
algorithm. RandBS has been also studied from the point of
view of the complexity and it constitutes an additional result
of this work.

In order to finalize the design of DEP, also other algorithmic
components have been adopted or introduced: a crossover
operator working on permutations, a biased selection scheme,
a heuristic-based initialization, a restart procedure, and a local
search method.

DEP has been validated by means of a broad experimental
analysis aiming to: (i) investigate the impact of the vari-
ous algorithmic components on the search, and (ii) compare
DEP with the state-of-the-art algorithms for PFSP-TFT. The
experiments have been held on widely accepted benchmark
suites and statistical analyses have been conducted on the
obtained results. Then, discussions are provided in order to
show when and how the proposed approach allows to reach
remarkable, or at least competitive, results both regarding its
peak performances and its robustness.

The rest of the paper is organized as follows. In Section II,
a review of the literature on PFSP-TFT algorithms is provided.
The main scheme of DEP, together with a brief overview of
the DE proposals for permutation spaces found in literature,
are described in Section III. Section IV introduces the abstract
algebraic differential mutation operator, its specialization for
the permutations space, and presents the randomized bubble
sort algorithm. Section V describes the other algorithmic
components of DEP. The experimental analysis is provided
in Section VI. Finally, conclusions are drawn in Section VII
where future lines of research are also depicted.

II. RELATED WORK

As in other combinatorial problems, three main approaches
can be considered to solve PFSP-TFT: exact algorithms,
heuristic methods, and meta-heuristics.

Since PFSP-TFT is NP-hard, algorithms that guarantee to
find the optimal schedule, for instance by using the branch
and bound method, are practical only for the instances with
no more than 15 jobs [3].

To overcome the limits of the exact algorithms, heuristic
methods have been proposed. These techniques generally work
by iteratively adding jobs to a partial schedule until it becomes
a complete solution. For this reason they are usually referred

to as “constructive heuristics” [2]. One of the most popular
heuristic for PFSP-TFT is the Liu-Reeves procedure LR [9].
LR allows to regulate the trade-off between efficiency and
effectiveness by means of a parameter that is usually set to
n/m (in this case, we will refer to it as LR(n/m)). Heuristic
methods allow to handle larger instances, but, unfortunately,
they show poor performances for 50 or more jobs [3]. There-
fore, they are usually employed only to build initial solutions
for the more powerful meta-heuristic methods.

Among the meta-heuristics, three main classes of algorithms
can be recognized: local search schemes, evolutionary algo-
rithms, and hybrid methods.

Local search schemes iteratively improve a single incum-
bent solution by alternating the phases of neighborhood search
and random perturbation. For PFSP problems, usually the
neighborhood structure of the search space is built with
insertion or interchange moves [10]. The neighborhood search
phase starts from a seed solution and iteratively updates it
with an improving neighbor until a local optimum is reached.
Then, a random perturbation is performed to (hopefully)
escape from the local optimum and the local search is iter-
ated again. Recently, two effective local search methods for
PFSP-TFT, namely Iterated Local Search (ILS) and Iterated
Greedy Algorithm (IGA), have been proposed in [11]. ILS
and IGA share many features: they both build the initial
solution using LR(n/m), they adopt an acceptance criterion
of “simulated annealing type” (not only improving solutions,
but also slightly worsening ones may be accepted), and they
employ a neighborhood search (namely, iRZ [12]) based on
the insertion neighborhood. Their difference resides in the
perturbation scheme. While ILS blindly performs a small
number of random insertion moves, IGA adopts a greedy
destruction-construction scheme [13] guided by partial fitness
evaluations.

Another important local search scheme is Variable Neigh-
borhood Search (VNS), which introduces the idea of neigh-
borhood change by alternating local search phases using
different neighborhoods. Hence, when a local optimum is
reached for the current neighborhood, a new local search on
another neighborhood allows to continue the global search.
In a recent work [14], six different VNS algorithms have
been successfully applied to PFSP-TFT. All the six VNSs are
based on the insertion and interchange neighborhoods, employ
a perturbation procedure to escape from the local optima
common to both neighborhoods, and build the initial solution
using LR(n/m). They differ in how the neighborhood searches
are combined. The most performing variant is VNS4 that
iteratively alternates a full interchange neighborhood search
and one iteration of the insertion neighborhood search.

Differently from the local search schemes, evolutionary
algorithms use Darwinian, statistical or swarm-intelligence
principles to evolve a population of solutions. Often, evolu-
tionary algorithms are hybridized with local search schemes
as in the two recent PFSP-TFT state-of-the-art meta-heuristics,
AGA [15] and HGM-EDA [3]. Both adopt LR(n/m) and
extensively use local search.

AGA is an asynchronous genetic algorithm which uses a
modified VNS procedure parameterized by an integer number,
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called “power”, indicating the depth of the local search. Just
before applying the crossover, the two selected parents are
improved using VNS with two different power values in
order to diversify them. Then, the two produced offsprings
are improved again by using VNS, this time both with the
maximum allowed power.

HGM-EDA is composed by two evolution stages. The first
stage is performed by a new estimation of distribution algo-
rithm, i.e., GM-EDA, while in the second stage a VNS scheme
similar to VNS4 is employed to improve the best solution
obtained by GM-EDA. The novelty of this work resides in
the probabilistic model used in the first stage. Indeed, GM-
EDA adopts the generalized Mallows model for permutations
and introduces estimation and sampling procedures for it.
However, the experimental results reported in [3] show that
GM-EDA is able to reach state-of-the-art results only in its
hybridized variant, i.e., HGM-EDA.

III. DIFFERENTIAL EVOLUTION FOR PERMUTATIONS

The classical Differential Evolution (DE) [4], [16] is a
popular and effective evolutionary algorithm [17], [18] for
continuous optimization that iteratively employs the follow-
ing genetic operators: differential mutation, crossover and
selection. Despite the impressive performances in numerical
optimization, DE applications to combinatorial problems, and
particularly to permutation-based problems, are still unsatis-
factory. Indeed, the vast majority of DE algorithms for the
PFSP problem adopts some transformation scheme to encode
permutations as numerical vectors. Therefore, classical DE is
used to directly evolve the solutions which are decoded to
permutations only in the evaluation step. For instance, the
“random key” technique [19] decodes a numerical vector by
sorting its components and using the indices of the sorted keys
to represent a permutation. This and other similar techniques
have been used in the DE schemes reported in [6] and, more
recently, in [5], [20], [21].

To the best of our knowledge, the only DE scheme in
literature that directly handles permutations representations
is the Geometric DE (GDE) proposed in [22]. However,
GDE, in its permutation-based form, has been applied only
to the Traveling Salesman Problem (TSP) obtaining poor
performances.

The differential mutation is generally considered the key
component of DE [8] and it has been argued that it confers to
DE the “contours matching” property (term coined by Price
et al. in [8]), i.e., it allows numerical DE to automatically
adapt both mutation step size and direction to the search
space. Conversely, our approach mainly relies on an algebraic
design of the differential mutation operator that allows to
directly handle permutations in a way that is consistent with
its numerical counterpart.

The main scheme of our DE for Permutation spaces (DEP)
is outlined in Fig. 1 and resembles that of classical DE.

DEP directly evolves a population {7y,...,mn} of N per-
mutations. The three genetic operators of mutation, crossover
and selection mainly differ from the classical ones for their
internal implementations. For every population individual 7,

1: Initialize Population {rm1,..., 7N}

2: while num_fit_evals < max_fit_evals do

3 for i < 1to N do

4: v; < DifferentialMutation(¢, {m1,...,7x}, F)
5: (v}, vY) <+ Crossover(m;, v;)

6: Evaluate f(v}) and f(v}')

7 end for

8: for i < 1to N do

9: m; < Selection(m;, v}, vl 0)

10: end for

11: if restart criterion is satisfied then

12: Optionally perform a Local Search on mpest
13: Restart Population

14: end if

15: end while

Fig. 1. Differential Evolution for Permutations

the differential mutation operator builds a mutant v; by using
three individuals randomly selected from the current popu-
lation and the scale factor parameter F' € (0, 1]. Its working
scheme is described and motivated in Section IV. The adopted
crossover is parameterless and, given 7; and v;, produces two
offsprings, i.e., v} and v, which both undergo selection with
m;. The selection operator has been extended by introducing
the real-valued parameter 6 that regulates the selective pressure
of DEP. The employed crossover and the proposed selection
are both described in Section V. Finally, in order to improve
the quality of the results, three other aspects are considered:
a possibly guided initialization, a restart mechanism, and the
use of a local search refinement. Also these DEP components
are described in Section V.

IV. DIFFERENTIAL MUTATION FOR PERMUTATIONS

In the most common variant of differential mutation (usually
denoted as “rand/1”), for each population individual z;, a
mutant v; is generated according to

Vi = Tp, ®F O (2, © xrz) 2)

where the scalar F' is the DE scale factor parameter that
usually lies in (0, 1], and x,,, x,,, 2., are three randomly
chosen distinct population individuals, all different from x;.
Moreover, in the numerical DE case, the operators &, ©, ®
are the usual vectorial operations of R".

In the following we introduce a differential mutation op-
erator for the permutations space that is consistent with the
classical numerical definition. First, in Section IV-A, after
recalling some preliminary concepts of group theory, we
propose and motivate an abstract differential mutation scheme
for generic combinatorial spaces. Then, in Section IV-B, we
provide an implementation of this scheme for the permutations
space.

A. Differential Mutation in Finitely Generated Groups

The key point behind the classical numerical differential
mutation is the dichotomous interpretation of a vector in the
Euclidean space. Indeed, it can be interpreted either as a point
in the space, thus a DE candidate solution, and as a free vector
(without point of application) connecting two points/solutions.
In this sense, equation (2) can be interpreted as follows. x,, —
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Ty, 1s the free vector d that, if applied to z,,, produces .,
ie, ., + d = Zr,. Then, the magnitude of d is scaled by
F € (0,1], and, finally, the scaled vector F - d is applied to
Ty, producing the mutant v;.

Here we provide an abstract scheme that allows to apply
the differential mutation to a generic discrete search space in
a way that is consistent with the aforementioned interpretation.
The only condition we require is that the solutions in the search
space form a finitely generated group.

Let G be a group, i.e., a set provided with an internal
operation, denoted by o, which is associative, admits a neutral
element e and, for each element © € G there exists its inverse
r e Gsuchthat rox ™t =x"tox=e.

G is said to be finitely generated if there exists a finite
subset H C G such that every x € G can be written as
the composition of some elements of H, i.e., © = hjo---0
hi where hy,...,hr € H. The elements of H are called
generators of G, while the composition chain hy o --- 0 hy is
referred to as a decomposition of x.

Interestingly, a finitely generated group has a useful ge-
ometric interpretation that allows to connect our algebraic
definition of the search space with the neighborhood structures
frequently adopted to analyze combinatorial fitness landscapes
(see for example [23, Ch. 5]). Indeed, given a group G with
its finite subset of generators H, it is possible to represent the
search space as a Cayley graph C(G, H), i.e., a directed graph
whose vertices are the elements of G and, for any x € G and
h € H, the vertices x and x o h are joined by a directed edge
labeled with h. The Cayley graph is regular (every vertex has
the same degree), strongly connected (for every ordered pair of
vertices there is a path connecting them) and vertex-transitive
(informally, it is not possible to recognize a vertex by simply
looking at its incoming and outgoing edges). Moreover, the
shortest path distance on C(G, H) induces a metric on G.

The properties of the Cayley graph allow to define a notion
of difference in the search space. Indeed, for any two distinct
solutions =,y € @, there exists an oriented path in C(G, H)
connecting y to x. This path is not unique in general, even
if we restrict our attention to shortest paths. However, if
(hi,...,hy) is the sequence of the edge labels of any path
from y to x, then its evaluation h; o --- o hy is always
equal to y~! o z. On the other hand, any sequence of edge
labels (hi,...,hy) can be applied to any vertex z obtaining
a path from 2z to z o hy o --- o hy. Hence, the sequences of
edge labels can be thought as the discrete counterpart of the
free vectors. Therefore, since every sequence of edges can be
synthesized by its evaluation, we define the difference between
two solutions z,y € G as

roy:=y toum. 3

Notably, since x & y € G, all the elements of G can
be interpreted both as solutions and as differences between
solutions, like in the Euclidean space.

The addition of x,y € G can be simply defined as

m@y;:xoy. (4)

Interpreting = as a solution and y as the evaluation of a
sequence of edges, then x oy is exactly the solution reachable

from x following a path with evaluation y. Note that the
definitions of addition and subtraction are consistent to each
other because * = y @ (r ©y) = yo (y~tox) = x for any
x,y € G.

Given a solution z € G, its magnitude |z| is the length of
a shortest path from e to z in C(G, H), or, equivalently, the
length of a minimal decomposition of z using the generators in
H. The latter interpretation allows to define the multiplication
between a real number F € [0,1] and an element z € G as
the truncation of a minimal decomposition of z, i.e., given
z=hyo--ohy,

F®z:=hjo---0hy, where k = [F - |z|]. )

Geometrically, F' ® (x © y) coincides with the truncation of
a shortest path going from y to x in C(G, H), therefore, also
this operator mimics its numerical counterpart in the Euclidean
space. However, since the minimal decomposition is not
unique in general, the multiplication operator is not uniquely
defined. Nevertheless, it is possible to define a stochastic
multiplication by using a random minimal decomposition of
z. The process of random decomposition has to be as fair
as possible to avoid biases in the DE algorithm, where the
stochastic multiplication will be used.

1: function STOCHASTICMULTIPLICATION(z € G, F € [0,1], H C G)

2: s < RandomizedDecomposer(z, H) > s is a sequence of generators
3 k < [F - Length(s)]

4: ré-e > e is the neutral element of G
5: for i < 1 to k do

6: 7 <— 1 0 s[i] > o is the composition operation of G
7 end for

8: return r >r=F0®Oz
9: end function

Fig. 2. Meta-Scheme of the Stochastic Multiplication Operator

The previous definitions (3), (4) and the algorithm of Fig.
2 allow to define the differential mutation scheme, outlined in
equation (2), also in discrete search spaces whose solutions
form a finitely generated group.

B. Application to the Permutations Space

The permutations of length n» form a group, called sym-
metric group and denoted by S(n), in which the internal
operation is the permutation composition o, i.e., the oper-
ator such that, for any 7,7 € S(n) and 1 < i < n,
(m o m2)(i) = mi(ma(i)). The neutral element of S(n) is
the identity permutation e, and, for any m € S(n), there exists
7! € S(n). Moreover, it is worthwhile to remark that we
interpret permutations as orderings, i.e., 7(¢) denotes the item
(job) at position i in 7, thus 7~ 1(i) is the position of item
(job) ¢ in 7.

In order to implement the stochastic multiplication in S(n),
a set of generators has to be chosen. Different generating sets
are possible and each one may lead to a different search space
structure. Here, we consider the three main generating sets for
permutations [10]:

« the set of all transpositions 7= {(¢,j)r : 1 <i<j <

n}, where (i,j)r denotes the permutation which swaps
the items at places ¢ and j;
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o the set of all insertions I = {(¢,5); : @ # jand 1 <
i,j < n}, where (i,7); denotes the permutation that
shifts the item at place ¢ to place j;

« the set of all simple transpositions ST = {(i,i+1)p
1 < i < n— 1}, ie., the permutations which swap
two adjacent items (note that (i,i+1)r = (i,i+1); =
(i+1,4) 7).

T and I have a quadratic number of generators (respectively,
(g) and (n—1)2) and both produce a search space diameter of
n—1. Their induced search space structures are also known as,
respectively, interchange and insertion neighborhoods, while
the induced metrics are, respectively, the Cayley and Ulam
distances [10]. ST, which is a proper subset of both 7" and 1,
has n — 1 generators and a diameter of (;) Its induced search
space structure is also known as adjacent swap neighborhood,
while the induced metric function dgg is the bubble sort
distance that counts the minimum number of adjacent swaps
necessary to transform one permutation into the other [10].

Intuitively, a search space with a greater diameter and a
smaller connectivity should reduce the arbitrarity in the com-
putation of a random minimal decomposition, i.e., a shortest
path in the Cayley graph. For this reason, we have decided to
work with simple transpositions, i.e., with ST

Furthermore, under the reasonable hypothesis that a

smoother fitness landscape is a benefit for the search, the fol-
lowing experimental investigation has been made with the aim
of verifying which generating set produces the smoother land-
scape on PFSP-TFT. We have randomly generated 120 prob-
lem instances (using the Taillard generator [24]), 10 instances
for each n x m configuration, with n € {10,20,50,100}
and m € {5,10,20}. Then, for each instance and for each
generating set, we made 500000 steps of random walk on
the Cayley graph in order to compute the autocorrelation p(1)
among the fitness values of successively visited solutions. Also
the correlation length (In|p(1)|)~! has been calculated. As
described in [23, Ch. 5], high autocorrelation and correlation
length values are an evidence that the analyzed landscape is
smooth. The average values reported in Table I (best results
in bold) show that the autocorrelations approach 1 when n
increases and the correlation lengths are higher for ST, thus
validating our choice.

TABLE I
AUTOCORRELATIONS AND CORRELATION LENGTHS

X m Autocorr. Corr. Lengths
ST T I ST T I

10x 5 0.92 | 0.74 | 0.81 12.49 3.26 4.77
10x10 | 092 | 0.73 | 0.81 11.79 3.25 4.68
10x20 | 093 | 0.74 | 0.82 15.74 3.40 5.03
20 x 5 0.97 | 0.86 | 091 37.16 6.52 | 10.63
20 x 10 | 0.96 | 0.85 | 0.90 25.87 6.31 9.79
20x20 | 096 | 0.85 | 0.90 22.76 6.15 9.41
50 X 5 0.99 | 094 | 096 | 160.34 | 15.74 | 27.54
50 x 10 | 099 | 093 | 0.96 97.75 | 14.20 | 24.01
50x20 | 099 | 093 | 0.96 70.49 | 14.16 | 22.94
100 x 5 | 1.00 | 097 | 098 | 640.95 | 29.88 | 53.67
100 x 10 | 1.00 | 0.96 | 0.98 | 272.42 | 26.92 | 47.28
100 x 20 | 0.99 | 0.96 | 0.98 | 144.18 | 24.46 | 41.60

Therefore, according to the meta-scheme reported in Fig.
2, in order to complete the design of the discrete differential

mutation for S(n), we have to implement of a randomized
decomposition algorithm that uses ST

A minimal decomposition of any 7 € S(n) in terms of
simple transpositions can be obtained by ordering 7 through
the classical bubble sort algorithm and by annotating, in the
reverse order, the simple transpositions performed. Indeed, the
sequence of simple transpositions (o1, ...,0;) performed by
bubble sort is optimal in length and produces a decomposition
of 71, By noting that the inverse of a simple transposition
is itself, a decomposition of 7 is just the reversed sequence
(01, ...,01). The length [ is equal to the number of inversions
of 7, i.e., the number of pairs (i,j) such that ¢ < j and
(i) > w(j) [25]. Moreover, the distance dpg(my,m2) of two
permutations 71,7 is equal to the number of inversions of
7r;1 oy (or, for symmetry, of ﬂ'fl 0 mg).

However, classical bubble sort is deterministic, i.e., fixing
its input permutation, it produces always the same decompo-
sition. In order to overcome this drawback, we propose the
randomized version of bubble sort outlined in Fig. 3.

1: function RANDBS(7 € S(n))

2 s+ ()

3: Z <+ {i:7w(@) >n(E+1)}

4: while Z # 0 do

5: i <— get and remove a random element from Z

6 Swap items 7(¢) and 7(i + 1) in 7

7 Append (4,7 + 1)1 to s

8 ifi>0andi—1¢ Z and n(i — 1) > (i) then

9 Insert i — 1 in Z

10 end if

11 ifi<n—landi+1¢ Z and w(i+ 1) > 7(i + 2) then
12: Insert i+ 1in Z

13: end if

14 end while

15 Reverse the sequence s

16 return s

17: end function

Fig. 3. Randomized Bubble Sort Algorithm

We now prove that RandBS produces a random minimal
decomposition of 7 by sorting it. In the following, for the
sake of clarity, we denote the original 7 to sort as .

At every iteration, the set Z contains the first index of all
the consecutive inversions of 7 (i.e., the inversions of the type
(4,74 1) which are also simple transpositions). Z is initialized
in line 3. Then, at each iteration of the loop:

o a simple transposition (4,4+1)7 is randomly chosen from

Z and applied to 7 (lines 5 and 6), thus the number of
inversion of 7 decreases by one;

« the sequence s is updated in line 7, thus s contains all
the simple transpositions applied so far (by applying the
simple transpositions in s to the right of g, the current
7 is obtained);

e Z is updated in the lines 8-13, by taking into account
that the simple transposition (7,74 1)7 can only generate
the consecutive inversions (¢ — 1,4) and (i + 1,7 + 2).

At the end of the loop, Z = (), thus m = e because it does not
contain consecutive inversions. Finally, s is reversed in line
15. All these properties guarantee that:

o the length of s is optimal and equal to the number of
inversions of 7,
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« the final content of s is a decomposition of 7,
« the number of iterations is limited above by (5) = O(n?).

Moreover, since the computation of Z from scratch (line
3) costs O(n), while each operation inside the loop can be
implemented in O(1), the overall time complexity of RandBS
is O(n?) as its classical counterpart.

It is worthwhile to note that RandBS, when applied to
m, through its iterations, performs a random walk on the
subgraph of the Cayley graph (induced by ST') which includes:
(1) the vertices represented by the permutations of the set
K(m) ={o € S(n) : dps(w,0) + dps(o,e) = dps(m,e)},
and (ii) a directed edge for any ordered pair (o1, 09) if and
only if 01,02 € K(m), (01,02) is already an edge in the
Cayley graph and dpg(o1,e) = dps(oa,e) + 1. Therefore,
RandBS generates minimal decomposition sequences in a
fair random way, although not with a uniform distribution.
However, according to [26], a uniform distribution on the
possible decompositions would require a so called “maximal
entropy random walk”, which has a much higher computa-
tional complexity.

Summarizing, the symmetric group, with its composition
and inversion operations, and the randomized bubble sort
algorithm, together with the abstract definitions provided in
the previous section, allow to implement a discrete differential
mutation for the permutations space as depicted in equation
(2). Finally, it is worth to note that, since permutations
composition and inversion cost both O(n), the complexity
of the differential mutation is dominated by the randomized
bubble sort complexity, i.e., O(n?).

For the sake of clarity we provide an illustrative exam-
ple of how the differential mutation works. Let n = 5,
F = 0.5, and the given permutations be my = (3,4,1,2,5),
m = (1,4,2,5,3) and m» = (5,3,1,4,2). In order to
compute the mutant permutation v = w9 @ F © (m; © 7a),
we have to first calculate m © M = m, Lo 9. Since
7yt = (3,5,2,4,1), then 7, o = (3,4,5,1,2). Now,
a possible result of RandBS(7; © m2) is the decomposition
<(2, 3)T7 (3, 4)T7 (1, Q)T, (2, 3)T7 (47 5)T; (3, 4)T> which has
length 6. Therefore, the truncation 0.5® (7w ©79) is (2,3)r 0
(3,4)70(1,2)r = (3,1,4,2,5). Finally, by composing my with
the truncated difference, we obtain v = (1,3,2,4,5) and, as
expected, dpg (v, mo) = 3.

V. OTHER DEP COMPONENTS

In the following we provide the description of the other
algorithmic components outlined in the DEP scheme reported
in Fig. 1.

A. Initialization

Two initialization schemes have been considered: a com-
pletely random (R_INIT) and a heuristic based (H_INIT)
initialization. In R_INIT, N permutations are randomly gener-
ated. Instead, H_INIT builds one solution using the construc-
tive heuristic LR(n/m) [9], while it randomly generates the
other N — 1 permutations.

B. Crossover

The crossover between the population individual 7; and the
mutant v; is performed according to the two-point crossover
version II (TPII) described in [27] (and also used by AGA
(15D).

TPII produces the two offspring individuals v} and v} as
follows. First, two cut-points j, k, such that 1 < j < k < n,
are randomly generated. Then, v}(h) < m;(h) for j < h <k,
while the missing jobs are inserted in v} starting from the
leftmost free place and following the order of their appearance
in v;. The other offspring v/ is filled in the same way but by
reversing the role of 7; and v;.

For instance, TPII applied to 7 = (1,2,4,5|3,9,8|7,6)
and v = (3,7,6,5/1,4,2]9,8), using the indicated cut-
points, produces v = (7,6,5,1|3,9,8/4,2) and v" =
(5,3,9,81,4,2|7,6).

TPII is parameterless and its computational complexity is
O(n). Furthermore, it is worth to note that TPII does not work
in the same metric space of the differential mutation operator.
Indeed, it is possible to prove that it is not geometric (in the
sense of [28]) under the distance dpg'. Actually, this is in
accordance with classical DE, where the differential mutation
works basing on the Euclidean distance, while the binomial
crossover is not geometric under this distance.

C. 0-Selection

Since the crossover generates two offspring solutions, the
selection is performed in two stages.

First, the trial solution v; is the fittest between the two
offsprings v} and v’

Then, the new population individual 7 is chosen by means
of a biased selection scheme, called 6-selection, between v;
and 7; according to

U

’ 7
T

TG

where A; = (f(v;) — f(m;)) /f(m;) is the relative fitness
variation of v; with respect to m;, r is a random number in
[0,1], and 6 € [0,1] is a selection parameter.

Similarly to classical DE selection, v; enters the next gen-
eration population if it is fitter than 7;. Otherwise, a slightly
worsening v; may be selected with a small probability that
linearly shades from 6, when A; = 0, to 0, when A; = 6.
Therefore, 6 regulates the selective pressure and allows to
prevent the stagnation of the search. Finally, note that the 6-
selection is a generalization of classical DE selection that is
reproduced by setting 6 = 0.

if f(v;) < f(m;) or r <max {0 — A;,0}
otherwise

(6)

D. Restart

When all the population individuals are the same, the DE
genetic operators (also in the classical continuous DE) are not

'This can be shown using the TPII example above. Indeed, since
dps(m,v') +dpg(v',v) = 24+ 8 # 20 = dgg(m,v), the first offspring
v’ is not in the metric segment, under the distance dpg, between its parents
7 and v. The same is true also for the second offspring v”’.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

able to evolve the population anymore. To address this issue,
a restart procedure has been introduced.

In DEP, a restart is triggered when all the population
fitnesses are the same. Indeed, it has been experimentally
observed that, in more than the 99% of the cases, this is
equivalent to check for the presence of a single genotype, but
it is much more efficient.

When a restart is triggered, one population individual is
kept, while the others are randomly reinitialized.

E. Local Search

After every restart, a local search procedure is optionally
applied to the best population individual. Three local search
application schemes are considered: N_LS, B_LS, and L_LS.
N_LS does not perform any local search. B_LS performs
a Baldwinian local search, i.e., the (hopefully) improved
solution is recorded but does not enter the DEP population.
L_LS performs a Lamarckian local search, i.e., the (hopefully)
improved solution replaces the original population solution.
With respect to N_LS, both B_LS and L_LS consume fitness
evaluations. However, B_LS, conversely from L_LS, does not
influence the DEP evolution dynamics.

The local search procedure employed is similar to VNS,
[14], though we do not use any perturbation scheme. A first-
improvement local search using the interchange neighbour-
hood is carried out until a local minimum is found. Then, the
best solution in its insertion neighbourhood is chosen and the
whole process is iterated again until a local minimum common
to both neighbourhoods is reached.

VI. EXPERIMENTAL ANALYSIS

The experimental analysis has been performed with four
purposes: calibrate the DEP parameters, compare DEP with
the state-of-the-art PESP-TFT algorithms, study the impact of
the different DEP components, and analyze the computational
times.

It is worth to note that, while the comparison analysis has
been held using the standard benchmark suites proposed in
[24] and [3], the calibration instances have been randomly
generated by using the same generator. This avoids an over-
tuning of the DEP parameters to the test instances and it
performs a calibration oriented to the most widely accepted
benchmark suites. The dimension of the benchmark instances
varies with 20 < n < 500 and m € {5, 10,20}.

In order to be consistent with the other works on this subject
(e.g., [3], [11], [15]), the performance measure employed is
the average relative percentage deviation (ARPD) defined as

k

1 (Alg; — Best) x 100
ARPD = —
R k ; Best )

where Alg; is the final TFT value found by the algorithm Alg
in its i-th run of a total of k runs, while Best is a reference
TFT value for the problem at hand. Moreover, the ARPDs
obtained by the algorithms have been compared by means of
non-parametric statistical tests [29].

Finally, the maximum numbers of fitness evaluations are the
same reported in [3, Tables III and IV].

A. Calibration of DEP

DEP has five parameters: the scale factor F', the population
size N, the selection parameter 6, the initialization scheme,
and the local search application scheme. Note that, differently
from classical DE, DEP has no crossover parameter.

The popular self-adaptive scheme proposed in [30] has been
used to dynamically adapt F' during the evolution. The other
four parameters have been chosen by means of a full factorial
experimental analysis considering the following levels:

e N: 50, 100, and 200;

e 0: 0, 0.005, 0.01, and 0.02;

e initialization: R_INIT, and H_INIT;

¢ local search application: N_LS, B_LS, and L_LS.
Therefore, we have a total of 3 x4 x 2 x 3 = 72 DEP settings
to compare.

The experimental design has been modeled with the aim
of providing one single DEP setting that (hopefully) performs
well across the different problem configurations. The candidate
DEP settings were compared on 11 problem configurations,
all the n x m combinations with n € {20, 50,100,200} and
m € {5, 10,20} except 200x 5. For each problem, 10 instances
were randomly generated and every DEP setting was run once
for each instance, thus having a total of 72 x 11 x 10 = 7920
runs. Then, an ARPD value is produced for every setting and
every problem configuration. According to [31, Th. 4.12], this
experimental setting minimizes the variance of the averaged
performance estimator ARPD.

Table II provides, for every problem configuration, the
best performing DEP setting together with its ARPD on the
problem and its overall ARPD. Since all the DEP settings
perform exactly the same on the 20 jobs instances, these are
not reported.

TABLE II
CALIBRATION RESULTS

Y Best DEP Setting on n X m Problem | Overall

N 0 Init. LS ARPD ARPD
50 x 5 200 0.005 R_INIT N_LS 0.05 1.58
50 x 10 100 0.01 R_INIT L_LS 0.14 0.17
50 x 20 50 0.01 H_INIT B_LS 0.08 0.26
100 x 5 | 100 0.01 H_INIT L_LS 0.03 0.17
100 x 10 100  0.01 R_INIT N_LS 0.12 0.17
100 x 20 50 0.01 H_INIT B_LS 0.08 0.26
200 x 10 | 200 0.01 R_INIT L_LS 0.04 0.57
200 x 20 | 100 0.01 H_INIT B_LS 0.12 0.15

Interestingly, the best performing setting on 200 x 20, i.e.,
(N =100,6 = 0.01, H_INIT,B_LS), is also the setting with
the best overall ARPD. A statistical analysis has been also
performed in order to validate the experimental results of the
seven settings of Table II (note that the best settings on 50 x 20
and 100 x 20 coincide). Due to the different dimensionalities
of the problems considered, we have employed the non-
parametric Quade test that, as suggested in [29], allows to
take into account the problems difficulties by performing a
weighted ranking analysis based on the intra-problem ARPD
variabilities. The Quade test shows that the best setting in
terms of overall ARPD has also the best Quade average
rank. Furthermore, the Quade p-value of 0.004 indicates the



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

existence of statistical differences among the performances of
the analyzed settings. Thus, the Finner post-hoc procedure [29]
has been applied in order to compare the selected settings. The
obtained p-values show, with a high evidence, that the four
settings with N = 100 and 6 = 0.01 perform statistically the
same and outperform the others.

Therefore, the setting selected for further investigations is
(N =100,6 = 0.01, H_INIT, B_LS).

B. Comparison with state-of-the-art algorithms

The selected DEP setting has been experimentally compared
with six state-of-the-art PFSP-TFT algorithms: the three local
search schemes ILS, IGA and VNS4, the evolutionary algo-
rithm GM-EDA, and the two hybrid evolutionary schemes
AGA and HGM-EDA (all of them are described in Section
1D).

The seven algorithms have been evaluated on the well
known 120 benchmark instances proposed by Taillard in
[24]. Consistently with [3], for each algorithm, 20 runs per
instance were allocated using the evaluations budgets of [3].
Furthermore, in order to perform a fair comparison, the results
for AGA, VNS4, GM-EDA and HGM-EDA have been directly
taken from the supplementary data of [3], while ILS and IGA
have been executed with an equal number of fitness evaluations
and using the settings suggested in their original paper [11].

In order to detect the statistical differences among the
ARPD results, as suggested in [29], the non-parametric Fried-
man test and the Finner post-hoc procedure have been applied
in every n X m problem configuration. The significance level
has been set to a = 0.05.

For each problem instance, the best TFT value and the
ARPDs of each algorithm are provided in Table III. The best
ARPD on each instance is reported in bold. The results marked
with the asterisk denote that the best TFT value has been
achieved at least once among the 20 runs of the algorithm.
The TFTs in bold indicates a new best known value with
respect to both [3] and [11]. For each problem configuration
and for each algorithm, Table III also shows the Friedman
average rank together with a symbol indicating the result of the
statistical comparison with DEP: “=" if the performances are
statistically equal, and “—" or “4” if, respectively, DEP sta-
tistically outperforms or it is outperformed by the comparing
algorithm. Lastly, the ARPDs aggregated for every problem
configuration, and the overall ARPDs, are shown in Fig. 4.

The experimental results show that, in 75 instances over
120, DEP obtains the best TFT, and, most remarkably, 14 of
them are new best known solutions on the 20 instances of
the 200 x m problems which, for their size, are reputed to be
difficult. The robustness of DEP is proved by the fact that it
has the lowest ARPD results in 95 instances over 120 (almost
the 80% of the benchmark suite). Note also that, in almost all
the problems with 100 and 200 jobs, DEP is the best algorithm
on average. DEP has also the best Friedman average ranks on
10 over 12 problem configurations and, as shown in Fig. 4, its
aggregated ARPDs are the best ones or they are very close to
the best ones.

These results can be summarized as follows.
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Fig. 4. Per-problem comparison and overall results

o In the 20 x m problems, all the algorithms perform the
same, except GM-EDA which is significantly worse than
all the others.

o For the problems with 50 jobs, DEP has only one
comparable competitor, i.e., AGA, while all the other
algorithms are significantly worse.

e In the 100 x m problems, DEP has average rank values
not greater than 1.1 and it significantly outperforms every
other competitor.

o A similar behavior is found for the problems with 200
jobs, where no competitor is able to match the perfor-
mances of DEP.

o The only weakness is found in the problems with 500 jobs
where DEP is outperformed by AGA and the local search
schemes. A plausible reason is the slow convergence of
DEP in these cases. Indeed, zero or almost zero restarts
have been observed on the 500 jobs instances. However,
its aggregated ARPD is not too far from the best ones if
compared to those of GM-EDA and HGM-EDA which
work in a similar metric space.

« Finally, and most notably, DEP reports the best overall
ARPD.

In conclusion, DEP can be considered among the state-of-
the-art PFSP-TFT algorithms. Note also that 9 new best known
solutions have been obtained by our runs of ILS and IGA (one
on the first 200 x 20 instance and the others on the 500 x 20
instances). This is plausibly due to the larger number of fitness
evaluations with respect to [11].

C. Additional Experiments

The previous analysis shows that DEP performances are
excellent for n < 200, while they degrade when n = 500.
Since the Taillard benchmark suite [24] does not consider
problem instances with 200 < n < 500, a further experimental
analysis has been performed on the additional 100 benchmark
instances, with n € {250, 300,350,400,450} and m €
{10, 20}, proposed in [3]. These additional PFSP instances
were randomly generated using the same generator proposed
by Taillard [24], thus constituting a consistent extension of the
Taillard benchmark suite.
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EXPERIMENTAL COMPARISON OF DEP WRT STATE-OF-THE-ART PFSP-TFT ALGORITHMS ON TAILLARD BENCHMARKS

Problem  Best

GM

HGM

TABLE III

Problem Best

GM

HGM

Instance TFT AGA VNS4 EDA EDA IS IGA  DEP Instance TFT AGA VNS4 EDA EDA ILS IGA  DEP

20x 5 14033 0.00 * 0.00 * 0.18 * 0.00 * 0.00 * 0.00 * 0.00 *| 100 x 5 253605 029 125 087 023 048 046 0.05*
15151 0.00 * 0.00 * 0.48  0.00 * 0.00 * 0.00 * 0.00 * 242579 030 180 108 035 080 0.82 0.05*
13301  0.00 * 0.00 * 0.50 * 0.00 * 0.00 * 0.00 * 0.00 * 238075 022 149 085 026 034 029 0.07*
15447 0.00 * 0.00 * 0.43 * 0.00 * 0.00 * 0.00 * 0.00 * 227889 0.17* 1.29 078 020 045 032 0.06
13529 0.00 * 0.00 * 0.21 * 0.00 * 0.00 * 0.00 * 0.00 * 240589 021 129 080 023* 056 045 0.02
13123 0.00 * 0.00 * 0.08 * 0.00 * 0.00 * 0.00 * 0.00 * 232689 032 152 090 028 037 047 0.06 *
13548 0.00 * 0.00 * 0.79  0.00 * 0.00 * 0.02 * 0.00 * 240750 0.11* 131 097 031 043 030 022
13948 0.00 * 0.00 * 0.18 * 0.00 * 0.00 * 0.00 * 0.00 * 231064 029 179 106 035 056 0.81 0.07 *
14295 0.00 * 0.00 * 0.18 * 0.00 * 0.00 * 0.00 * 0.00 * 248039 040 166 105 038 066 0.67 0.09 *
12943 0.00 * 0.00 * 0.46 * 0.00 * 0.00 * 0.00 * 0.00 * 243258 0.19 144 100 028 051 070 0.07 *

‘Friedman AvgRank 345 345 7.0 345 345 375 345 | Friedman AvgRank 2.2 7.0 6.0 2.8 45 44 11

Stat.Comp. vs DEP = = — = = = Stat.Comp. vs DEP — — — — — —

20 x 10 20911 0.00 * 0.00 * 0.45* 0.00 * 0.00 * 0.00 * 0.00 *|100 x 10 299101 043 1.63 180 044 042 056 0.16 *
22440 0.00 * 0.00 * 0.54 * 0.00 * 0.00 * 0.00 * 0.00 * 274566 0.60 158 208 0.69 054 0.85 0.28*
19833  0.00 * 0.00 * 0.31 * 0.00 * 0.00 * 0.00 * 0.00 * 288543 037 157 174 038 082 0.88 0.18*
18710 0.00 * 0.00 * 0.75  0.00 * 0.00 * 0.00 * 0.00 * 301552 050 179 208 053 088 096 0.18 *
18641 0.00 * 0.00 * 0.35  0.00 * 0.00 * 0.00 * 0.00 * 284722 0.61 1.64 195 054 073 0.64 0.22*
19245 0.00 * 0.00 * 0.77  0.00 * 0.00 * 0.00 * 0.00 * 270483 042 176 183 045 052 0.63 0.19 *
18363 0.00 * 0.00 * 0.47 * 0.00 * 0.00 * 0.00 * 0.00 * 280257 037 158 165 040 046 041 025*
20241 0.00 * 0.00 * 0.47 * 0.00 * 0.00 * 0.00 * 0.00 * 291231 049 177 203 061 069 072 027 *
20330 0.00 * 0.00 * 0.27 * 0.00 * 0.00 * 0.00 * 0.00 * 302624 036* 146 176 041 057 0.66 0.20
21320 0.00 * 0.00 * 0.24 * 0.00 * 0.00 * 0.00 * 0.00 * 291705 048 1.84 168 050 047 045 0.06 *

‘Friedman AvgRank 3.5 35 70 35 35 35 35 | Friedman AvgRank 25 6.1 69 33 3774510

Stat.Comp. vs DEP = = - = = = Stat.Comp. vs DEP — = - - - —

20 x 20 33623 0.00 * 0.00 * 0.65* 0.00 * 0.00 * 0.00 * 0.00 *|100 x 20 366438 0.80 170 226 0.67 079 071 037 *
31587 0.00 * 0.00 * 0.28 * 0.00 * 0.00 * 0.00 * 0.00 * 373138 055 143 204 058 054 073 025*
33920 0.00 * 0.00 * 0.04 * 0.00 * 0.00 * 0.00 * 0.00 * 371206 053 137 199 041 038* 049 0.27
31661 0.00 * 0.00 * 0.28 * 0.00 * 0.00 * 0.00 * 0.00 * 373574 060 136 192 045 050 049 0.26 *
34557 0.00 * 0.00 * 0.26  0.00 * 0.00 * 0.00 * 0.00 * 369850 059 136 193 048 057 * 050 0.21
32564  0.00 * 0.00 * 0.30 * 0.00 * 0.00 * 0.00 * 0.00 * 372752 051 146 217 042 056 056 030 *
32922 0.00 * 0.00 * 0.61 0.00 * 0.00 * 0.00 * 0.00 * 373447 070 182 219 063 073 090 0.33*
32412 0.00 * 0.00 * 0.52  0.00 * 0.00 * 0.00 * 0.00 * 385456 046 141 196 043 * 048 0.64 0.20
33600 0.00 * 0.00 * 0.56 * 0.00 * 0.00 * 0.00 * 0.00 * 375352 062 152 201 052 044 054 041 *
32262 0.00 * 0.00 * 0.41 * 0.00 * 0.00 * 0.00 * 0.00 * 379899 048 129 205 049 * 044 048 046

‘Friedman AvgRank 3.5 35 70 35 35 35 35 | Friedman AvgRank 4.1 60 7.0 27 31 40 11

Stat.Comp. vs DEP = = — = = = Stat.Comp. vs DEP — — — — — —

50x 5 64803 0.05* 0.78 0.79 0.12* 0.05* 0.07 0.05 [200x 10 1047541 049 126 120 0.19 029 0.15%* 022
68062 0.06 * 0.88 094 0.12 0.13 0.14 0.08 1035783 094 154 149 032 071 065 0.15*
63162 0.19 * 1.21 134 038 0.24* 024 021 1045706 0.66 1.62 130 032 055 048 0.15*
68226 0.17 112 127 022* 013 0.26* 0.13 1029580 0.77 1.65 138 045 051 048 0.12*
69392 0.09 * 087 0.89 015 0.16 0.14 0.09 1036464 0.68 135 137 019 042 039 013 *
66841 0.10* 080 0.82 0.18* 0.19 0.16 * 0.04 1006650 0.50 136 139 0.19* 0.67 055 023
66253 0.03 074 096 0.08 0.09* 0.10 * 0.03 1052786 095 1.66 123 024 061 058 0.10 *
64359 0.05 089 097 023* 015 032 0.05* 1044961 062 151 139 025 035 034 011%*
62981 0.09* 083 0.81 0.14* 0.19 0.23* 0.05 1023315 0.81 161 129 028 093 086 0.24*
68811 020 1.18 1.06 034 022 033%* 0.15 1029198 097 187 148 039 087 0.78 0.25*

‘Friedman AvgRank 1.7 62 68 40 35 43 1.5 | Friedman AvgRank 46 68 62 L9427 30 13

Stat.Comp. vs DEP = — — — — — Stat.Comp. vs DEP — — — — — —

50 x 10 87204 033 1.12 211 039 044 040 * 0.8 *|200 x 20 1225282 0.76 148 1.72 039 030* 040 0.20
82820 0.22* 1.09 245 0.60* 059 0.39* 0.30 1239246 1.07 1.67 166 054 064 074 0.21*
79987 023 * 1.07 184 036 032 040 0.22 1263134 1.08 1.65 157 048 044 051 0.26 *
86545 021 094 187 036 026 031 0.16* 1233443 125 184 173 058 0.83 1.03 0.24*
86424 0.17 093 205 041 024 035%* 0.28 1220117 112 179 193 053 080 0.78 0.17 *
86637 0.13* 077 155 029 0.17 035 011 1223238 1.17 1.69 169 046 077 086 0.19 *
88866 0.25* 0.89 197 048 028 027 042 1237116 1.03 165 166 064 070 0.81 0.15*
86820 0.19 095 2.04 036 043 044 0.01* 1238975 125 172 172 051 081 072 0.19*
85526 029 1.1l 210 042%* 044 * 049 0.28 1225186 144 191 1.80 059 088 087 0.14*
87998 0.8 085 2.09 054 039* 045 0.1 1244200 1.16 1.62 168 052 048 055 0.11*

‘Friedman AvgRank 1.6 6.0 70 42 33 40 1.9 | Friedman AvgRank 5.0 65 65 23 30037 1.0

Stat.Comp. vs DEP = — — — — — Stat.Comp. vs DEP — — — — — —

50 x 20 125831 0.10 * 0.65 1.76 039 * 033 * 041 0.14 [500 x20 6687476 042 0.66 924 234 013 * 022 132
119247 0.05 052 159 023 014 0.15* 0.07 6809182 0.55 069 891 225 024* 036 0.96
116459 0.19 * 0.73 224 044 * 033 036 028 * 6734895 042 059 866 223 014 013* 1.25
120712 0.22 * 0.61 192 034 035 036 034 6767341 056 074 9.07 218 016 * 0.19 1.3
118184 040 086 230 0.52* 048 0.60 0.39 6720679 091 093 928 245 015* 0.17 1.26
120703 0.19* 0.62 1.78 035 034 047 0.16 6723390 0.60 084 9.04 256 014 0.18* 0.73
122962 038 0.71 2.10 047 * 052 047 0.36 6681650 0.68 086 959 246 017 * 021 134
122489 0.16 0.75 224 055* 041 045 0.14 6769821 0.31* 058 862 209 028 020 0.73
121872 0.16 * 0.76 1.79 037 * 034 041 0.12* 6701696 043 074 899 219 010* 0.12 1.24
124064 023 * 090 195 042 035 064 0.29 6755620 037 0.62 870 218 0.15 0.10* 1.04

‘Friedman AvgRank 1.5 6.0 70 41 33 46 1.5 | Friedman AvgRank 3.0 41 7060 1317 49

Stat.Comp. vs DEP = — - - — — Stat.Comp. vs DEP + + — - + +
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Experiments have been held using the same setting of
Section VI-B. The only exception is the exclusion of the worst
performing algorithm, i.e., GM-EDA.

Fig. 5 and 6 show the aggregated ARPDs for each problem
configuration, respectively, for m = 10 and m = 20. These
ARPD values, the Friedman average ranks and the results of
the statistical comparison are reported in Tables IV and V.
More detailed results are provided on the web as supplemen-
tary data [32].

25 ——— —— T T T

ARPD

05

=] o
!

30

|
2 3
SQr;o %710 50+;0

Problem Configuration

Fig. 5. Aggregated ARPDs on the additional problems with m = 10
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Fig. 6. Aggregated ARPDs on the additional problems with m = 20

As shown by Fig. 5 and Table IV, on the problems with 10
machines, DEP obtains the best overall ARPD and it is the
only algorithm which persistently shows good performances
across the various values of n. Indeed, while HGM-EDA per-
formances degrade when n increases, the other schemes based
on local search procedures, as expected, become competitive
for larger values of n.

On the other hand, as shown by Fig. 6 and Table V, when
m = 20 and n > 300, the ARPDs of DEP are far from
those of the best algorithm. However, the behavior of DEP
performances looks to be approximately constant with the
increasing of n, as for the instances with m = 10. Therefore,
regarding the overall ARPD on the n x 20 problems, DEP,

TABLE IV
EXPERIMENTAL COMPARISON OF DEP WRT STATE-OF-THE-ART
PFSP-TFT ALGORITHMS ON THE ADDITIONAL BENCHMARKS (m = 10)

HGM

nXxm AGA VNS4 EDA ILS IGA DEP
250 x 10 0.93 1.56 0.37 0.78  0.73 0.24
AvgRank 4.4 6.0 1.9 4.0 32 1.5
Stat.Comp. — — = — —
300 x 10 0.77 1.29 0.18 0.68  0.64 0.30
AvgRank 4.6 6.0 1.2 4.0 3.4 1.8
Stat.Comp. — — + — —
350 x 10 0.79 1.23 0.17 0.62 055 0.40
AvgRank 4.6 6.0 1.2 43 29 2.0
Stat.Comp. — — + - —
400 x 10 0.45 0.81 0.80 030  0.23 0.29
AvgRank 3.6 53 5.5 2.7 1.6 2.3
Stat.Comp. — — — = =
450 x 10 0.38 0.74 1.73 020 013 0.34
AvgRank 34 5.0 6.0 22 11 33
Stat.Comp. = — — + +
OVERALL

ARPD 0.66 1.13 0.65 0.52 046 0.31

TABLE V
EXPERIMENTAL COMPARISON OF DEP WRT STATE-OF-THE-ART
PFSP-TFT ALGORITHMS ON THE ADDITIONAL BENCHMARKS (m = 20)

HGM

nXxm AGA VNS, EDA ILS IGA DEP
250 x 20 1.08 1.56 0.43 0.67 077 0.66
AvgRank 5.0 6.0 1.2 2.7 35 2.6
Stat.Comp. — — + = —
300 x 20 0.95 1.31 0.27 0.46 0.5l 1.13
AvgRank 4.1 5.9 14 22 2.4 5.0
Stat.Comp. + — + + +
350 x 20 0.87 1.15 0.41 036 041 1.20
AvgRank 4.1 53 2.0 1.6 2.4 5.6
Stat.Comp. + = + + +
400 x 20 0.60 0.89 1.49 021 023 1.12
AvgRank 3.0 4.1 6.0 1.5 1.5 4.9
Stat.Comp. + + — + +
450 x 20 0.77 0.92 2.15 020 026 1.16
AvgRank 32 3.8 6.0 1.2 1.8 5.0
Stat.Comp. + + — + +
OVERALL

ARPD 0.85 1.17 0.95 038 044 1.05

although worse than IGA and ILS, is still comparable with
HGM-EDA, AGA, and VNS,.

This experimental session shows that DEP performances are
excellent and apparently independent of m when n < 250,
while, for n > 300 and conversely from the other competitors,
they are heavily influenced by the number of machines. In
order to investigate this phenomenon we have analyzed the
average number of restarts performed by DEP on the various
problem configurations. This quantity clearly relates with the
convergence speed of the DEP evolution. The greater is the
number of observed restarts, the faster is the DEP evolution
and vice versa. The analysis shows that: (i) the number of
restarts gracefully decreases when n increases, (ii) fixing n,
the number of observed restarts is considerably smaller for
m = 20 than for m = 10. Therefore, the slow convergence
looks to be a plausible explanation of DEP performances on
the problems with m = 20. This suggests that the number of
machines affects the characteristics of the landscape navigated
by DEP.

Finally, further experiments have been held in order to
compare DEP and the version of HGM-EDA with improved
initialization, namely Guided HGM-EDA [3]. Similarly to [3],
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the experimental comparison has been performed on the first
instance of the four largest problem configurations: 400 x 20,
450 x 10, 450 x 20, and 500 x 20. The experiments clearly
show that, although Guided HGM-EDA improves the results
of HGM-EDA, these are still worse than DEP results (the
detailed data for this experiment are provided on the web as
supplementary data [32]).

D. DEP Components Analysis

A study of the various DEP algorithmic components has
been mainly performed by analyzing the experimental results
obtained in the calibration phase (see Section VI-A). The anal-
yses of each DEP component are discussed in the following,
while a full detail is provided as supplementary data on the
web [32].

1) Initialization: The results for H_INIT and R_INIT,
averaged over all the calibration runs and aggregated for
every problem configuration, show that the heuristic-based
initialization outperforms the pure random scheme, though
they are comparable for small problems.

2) Mutation: The analysis of the mutation operator aims
at verifying (i) if the discrete differential mutation is effec-
tively better than a classical random mutation, and (ii) if the
randomization of bubble sort is necessary.

In order to investigate these points, five modified DEP
schemes have been devised, each one adopting a different
mutation operator:

o RandBS_MUT: the original DEP differential mutation
(see Section 1V),

o« R_MUT: it generates a completely random mutant,

e Q_MUT: it computes the bubble sort distance d between
the two individuals 7., and m,,, then it applies F - d
random adjacent swaps to the base individual 7,

o ClassicBS_MUT: it adopts the classical bubble sort,

o CocktailBS_MUT: it employs the variant of bubble sort
known as cocktail sort (it alternates left-to-right and right-
to-left scans during the sorting process).

Q_MUT is a simplified version of RandBS_MUT because
it uses only the distance d between two elements without
considering their difference, thus the perturbation strength of
both methods is the same. All the other components have been
set as described in Section VI-A and the analysis has been
performed using the calibration instances with n < 100. The
aggregated and overall results are depicted in Fig. 7.

The graph shows that, although all the mutations per-
form the same on the 20 jobs problems, RandBS_MUT
clearly outperforms the other schemes on the larger problems.
Therefore, both the hypotheses are experimentally validated.
Interestingly, the Q_MUT performances are in the middle
between RandBS_MUT and R_MUT. This suggests that both
magnitude and direction are important to guide the search. Fur-
thermore, ClassicBS_MUT and CocktailBS_MUT performs
similarly and both are worse than Q_MUT. This confirms
the hypothesis that a randomized navigation is definitely
necessary.

0.05 ———T—————— T T T T T

{ % ClassicBS_MUT |
-] CocktailBS_MUT
004 1 = - RandBS MUT _

0.03 / \

ARPD

0.02 |-

0.01 |-

%

n L L
50x10 50x20 100x5 100x10  100x20 OVERALL
Problem Configuration

0 = A
20x5 20x10 20x20 50x5

Fig. 7. Comparison of DEP using different mutation schemes

3) Crossover: As described in Section V-B, the crossover
adopted in DEP produces the two offsprings v’ and v” from
which, after a preliminary selection, the trial solution v is
chosen. This scheme doubles the number of fitness evaluations
per generation and halves the number of generations needed to
reach the evaluations cap. Nevertheless, the double offspring
crossover has a significantly larger success rate than any
possible version with a single offspring. Indeed, the conducted
experimental analysis shows that the choice of only one off-
spring, without considering the other, consistently deteriorates
the probability of replacing the original population individual,
thus slowing down the evolution.

4) Selection: The 0-selection scheme introduced in DEP
allows to regulate the acceptance threshold for the trial so-
lution. The four # values adopted in the calibration phase,
averaged over all the calibration runs and aggregated for every
problem configuration, show that the setting # = 0.01 is the
best one and, most notably, & = 0 is the worst parameter
value. The parametric Quade+Finner test confirms the result
and, most remarkably, 6 = 0.01 is significantly better than the
second best setting, i.e., § = 0.02, with a Finner p-value of
0.008. Moreover, since when 6 = 0, the 0-selection replicates
the classical DE selection, we can conclude that the proposed
selection scheme outperforms the classical one.

In order to furtherly understand the impact of 6 on the
evolution, the progress of the population diversity has been
investigated by considering the evolution of the coefficient
of variation of the population fitnesses. The analysis shows
that increasing 6 allows to quickly escape from stagnation
and accelerate population convergence, thus increasing the
number of restarts. However, a premature convergence can be
detrimental as much as a long stagnation, thus a trade-off is
needed. Since the best performances have been observed for a
value of # in the middle of the range of the tried values, this
suggests that the trade-off is obtained when 6 = 0.01.

5) Local Search Application Scheme: The different local
search application schemes considered in DEP allows to
regulate if and how apply a local search when a restart is
triggered.

It is worth to note that both B_LS and L_LS apply a pure
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local search just after the population has been converged.
Therefore, in the hypothesis that DEP evolution works well,
it is plausible that the local search does not perform too many
iterations and that the performances of the different schemes
should be comparable.

Interestingly, the distributions of the observed performances
of the three schemes on the calibration runs are almost equal.
This is confirmed by the non-parametric Quade test that defi-
nitely accepts the null hypothesis (equal performances among
the three settings) with a p-value of 0.66. Finally, as a further
evidence, it worths to note that the first six overall ARPDs
obtained in the calibration phase have N = 100, § = 0.01
and every other combination of local search and initialization
schemes. Therefore, the strength of DEP, differently from the
other evolutionary algorithms for PFSP-TFT, does not reside
in a refined application of a local search procedure, but it is
mainly due to its evolution scheme.

E. Computational Times

For every algorithm considered in our experimental session,
Table VI shows the average CPU time (in seconds) over 10
executions spent to perform the number of allowed fitness
evaluations on the first instance of every nm x m problem
configuration. All the executions were performed on a machine
equipped with Intel Core i7-970 (6 cores and 3.2 GHz), 16
GBytes of main memory, and Linux Mint 16.

TABLE VI
COMPUTATIONAL TIMES IN SECONDS

nxm | AGA VNS; GM-EDA HGM-EDA ILS IGA DEP
20X 5 57 43 526 88 39 54 132
20 x 10 117 76 693 215 112 141 229
20 x 20 236 186 856 557 210 190 354
50 x 5 149 102 1444 237 88 108 608
50 x 10 263 236 2398 597 209 238 1016
50 x 20 563 484 2856 1577 440 474 1345
100 x 5 307 230 5279 1038 200 219 1563
100 x 10 535 446 8083 2506 392 450 2467
100 x 20 | 1132 950 7518 3403 876 907 3133
200 x 10 830 919 18788 11675 822 884 4180
20020 | 1718 1865 20205 14131 1829 1856 13727
250 x 10 | 1206 981 29 642 17561 939 1147 4803
250 x 20 | 2296 2461 38738 22894 2314 2171 17872
300 x 10 | 1654 1358 54476 26374 1236 1305 6032
300 x 20 | 3160 2752 52105 30768 2558 2719 28453
350 x 10 | 1627 1673 77 564 36192 1636 1390 11405
350 x 20 | 4441 2571 79979 44755 3228 2955 37952
400 x 10 | 1774 1791 115135 44553 1800 1640 7501
400 x 20 | 4103 3889 124942 62954 3524 3583 50858
450 x 10 | 1931 2063 139616 66868 1768 2052 15136
450 x 20 | 4616 2468 139472 70026 3804 3914 60222
500 x 20 | 5099 4377 195076 106429 3910 3853 70506

AVG 1719 1451 50 700 25700 1451 1466 15432

Table VI shows that the computational times of the local
search methods (VNS4, ILS and IGA) are almost equal and
comparable to the computational times of AGA, although the
latter is a little slower. On the other hand, the evolutionary
algorithms (GM-EDA, HGM-EDA and DEP) are, as expected,
slower on average. This is mainly due to the fact that evo-
lutionary algorithms do not allow to employ the acceleration
technique for the TFT computation [33] heavily adopted by the
methods based on local search schemes. However, it is worth
to note that DEP is faster than both GM-EDA and HGM-EDA,
especially on the larger instances.

VII. CONCLUSION AND FUTURE WORK

In this work, we have defined a new discrete meta-heuristic
approach — the Differential Evolution for Permutation spaces
(DEP) — and we have applied it to the permutation flowshop
scheduling problem with the total flowtime criterion (PFSP-
TFT).

The main contribution is the algebraic design of the differ-
ential mutation operator which allows to extend the ‘“contour
matching” property of numerical DE to every combinatorial
search space representable by a finitely generated group. In
order to implement the abstract algebraic differential mutation
for the permutations space, a new O(n?) randomized bubble
sort algorithm has been proposed. Moreover, a novel selection
scheme that allows to control the evolution convergence speed
and stagnation has been also introduced.

We have performed a broad experimental analysis both to
tune the DEP components and to understand its dynamics.
DEP has also been experimentally compared with recent
state-of-the-art PFSP-TFT algorithms on a widely accepted
benchmark suite. Remarkably, DEP has obtained some new
best known solutions. Moreover, it is the best scheme on
average on the problem configurations from 20 x5 to 250 x 10,
and it is still competitive on the larger problems with 10
machines.

Future lines of research will include: (i) the implementation
of the algebraic differential mutation operator using other
generating sets for the permutations space and also for other
combinatorial spaces, (ii) the extension of the algebraic design
to other genetic operators like crossover, classical mutation or
the particle swarm update rule, and (iii) the application of DEP
to other PFSP optimization criteria (the makespan objective
is analyzed in [34]) or to other permutation-based problems
like TSP (Traveling Salesman Problem), QAP (Quadratic
Assignment Problem) and LOP (Linear Ordering Problem,
preliminary results for LOP are presented in [35], [36]).
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